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Abstract
BAYESIAN MECHANISMS IN SPATIAL COGNITION:

TOWARDS REAL-WORLD CAPABLE COMPUTATIONAL COGNITIVE MODELS OF

SPATIAL MEMORY

Tamas Madl
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2015

Existing computational cognitive models of spatial memory often neglect difficul-
ties posed by the real world, such as sensory noise, uncertainty, and high spatial com-
plexity. On the other hand, robotics is unconcerned with understanding biological cog-
nition. This thesis takes an interdisciplinary approach towards developing cognitively
plausible spatial memory models able to function in realistic environments, despite
sensory noise and spatial complexity.

We hypothesized that Bayesian localization and error correction accounts for how
brains might maintain accurate location estimates, despite sensory errors. We ar-
gued that these mechanisms are psychologically plausible (producing human-like be-
haviour) as well as neurally plausible (implementable in brains). To support our hy-
potheses, we reported modelling results of neural recordings from rats (acquired out-
side this PhD), constituting the first evidence for Bayesian inference in neurons repre-
senting spatial location, as well as modelling human behaviour data.

In addition to dealing with uncertainty, spatial representations have to be stored and
used efficiently in realistic environments, by using structured representations such as
hierarchies (which facilitate efficient retrieval and route planning). Evidence suggests
that human spatial memories are structured hierarchically, but the process responsible
for these structures has not been known. We investigated features influencing them
using data from experiments in real-world and virtual reality environments, and pro-
posed a computational model able to predict them in advance (based on clustering in
psychological space).

We have extended a general cognitive architecture, LIDA (Learning Intelligent Dis-
tribution Agent), by these probabilistic models of how brains might estimate, correct,
and structure representations of spatial locations. We demonstrated the ability of the
resulting model to deal with the challenges of realistic environments by running it in
high-fidelity robotic simulations, modelled after participants’ actual cities. Our results
show that the model can deal with noise, uncertainty and complexity, and that it can
reproduce the spatial accuracies of human participants.
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Chapter 1

Introduction

Brains have evolved to move bodies through space in order to increase the chances
of survival and reproduction, through numerous complex behaviours such as fleeing
from threats or searching for nutrients or potential mates. The ability to remember
spatial information, e.g. previously encountered food sources or shelters, has provided
sufficient evolutionary advantage that all known organisms with brains (and even some
without, such as the slime mold1 - Reid et al. (2012)) have at least a rudimentary ability
to utilize representations of space for more efficient navigation. Higher mammals have
evolved a network of brain areas implementing spatial memory, a system for storing
and recalling spatial information about the environment and about their location in it.

Representing spatial information accurately in the real world is hard, for several
reasons. Sensors and actuators are limited, erroneous and noisy (in the sense of noise
interfering with the signal). There are additional sources of uncertainty or unknown in-
formation, such as external events, actions of other organisms, unperceived or currently
unperceivable objects or events. Furthermore, physical environments can be highly
complex, and yet cognitive resources (amount of memory, processing power, time and
energy available) are necessarily limited by biological and physical constraints.

In artificial intelligence (AI) and robotics research, probabilistic models have pro-
vided key tools for dealing with such challenges, facilitating the quantitative charac-
terization of beliefs and uncertainty in the form of probability distributions, and the
machinery of Bayesian inference for updating them with new data. They have also
inspired the ‘Bayesian brain’ (Knill & Pouget, 2004) and ‘Bayesian cognition’ (Chater

1Slime molds are able to avoid previously explored areas using externalized spatial memories, and
to solve mazes using nutrient gradients

15



16 CHAPTER 1. INTRODUCTION

et al., 2010) paradigms in the cognitive sciences. These paradigms have been suc-
cessful in explaining human behaviour in tasks as diverse as the integration of sensory
cues (Ernst, 2006) including spatial information (Cheng et al., 2007; Nardini et al.,
2008), sensorimotor learning (Körding & Wolpert, 2004), visual perception (Yuille &
Kersten, 2006) or reasoning (Oaksford & Chater, 2007). Their success suggests an
answer to what biological cognition might be doing to cope with the above-mentioned
challenges: approximate Bayesian inference.

1.1 Motivation

Despite of this success and of the suitability of probabilistic models to deal with un-
certain and noisy spatial information, there have been few attempts to use them for
modelling spatial memory within cognitive modelling, the branch of cognitive sci-
ence concerned with computationally simulating mental processes. There is a gap
in the literature between probabilistic spatial models in robotics and computational
cognitive models of spatial memory. In robotics, Simultaneous Localization and Map-
ping (SLAM) models (Thrun & Leonard, 2008) are capable of dealing with real-world
noise, uncertainty, and complexity to some extent, but are cognitively implausible2.
On the other hand, current computational cognitive models of spatial memory, which
are designed to model biological spatial cognition, cannot deal with all of these chal-
lenges, and are thus confined to simplistic simulations (see Chapter 3 for a review,
and Figre 1.1 for an overview of the importance of spatial memory and the differences
between information processing in robots and brains).

In addition, although spatial representations in humans have been argued early to
be hierarchical (Hirtle & Jonides, 1985; McNamara et al., 1989; Greenauer & Waller,
2010), similarly to some robotic implementations having to deal with large, complex
environments (Kuipers, 2000; Wurm et al., 2010), it is not known how (by which pro-
cess) these hierarchical spatial maps might be structured. Although many computa-
tional models of spatial memory running in simplified environments exist, there is a
lack of biologically and psychologically plausible ‘algorithms’ serving as models of
human cognitive computations related to spatial information processing which can

2In our usage of the terms, a computational model is ‘psychologically plausible’ (or ‘cognitively
plausible’) to the extent that it is consistent with psychological findings and can accurately reproduce
psychology data, i.e. behaviours. Analogously, it is ‘biologically plausible’ (or ‘neurally plausible’)
to the extent that it is consistent with neuroscience and can reproduce neural data, e.g. single-cell
recordings or brain imaging results.



1.1. MOTIVATION 17

Figure 1.1: Motivation for proposing new computational cognitive models of spa-
tial memory. A: Learning representations of the space around animals confers signif-
icant advantages, such as the ability to plan a detour out of sight (dashed red arrow) to
reach a food source while avoiding danger in this example. In real environments, this
task is made more difficult by the unreliability, errors and noise inherent in both the
estimation of position by integrating self-motion and in estimated object distances (e.g.
based on vision). Most existing cognitive models of spatial memory neglect these chal-
lenges. B: State of the art SLAM models in robotics are able to estimate locations and
learn maps accurately, but rely on sensors and computations which are very different
from biology - e.g. higher measurement accuracy using laser-based distance sensors
(LIDAR), centralized control and coordination, and high number of serial operations
per second - up to 1010 floating-point operations per second (FLOPS) needed for state
of the art SLAM systems (Santos et al., 2013). C: In contrast, the hippocampus - the
major brain area involved in world-centered spatial representations - contains only a
few million neurons, of which only a subset is active at a time, each firing only a few
times per second (Rapp & Gallagher, 1996; Šimić & Bogdanović, 1997); and relies on
noisy, inaccurate sensory measurements. Although many models of spatial memory
in brains exist, there is a lack of computational mechanisms which are both neurally
and psychologically plausible, and can work in realistic environments and with noisy
sensors. (Example SLAM data in Panel B from (Newman et al., 2011), and 3D rat
brain in Panel C from (Calabrese et al., 2013), with permission.)



18 CHAPTER 1. INTRODUCTION

function in realistic, uncertain, complex environments.

The deprioritization of the problems of uncertainty and noise in favour of tractably
modelling other human cognitive mechanisms is also pronounced in cognitive archi-
tectures, which try to account for a large number of mental processes in a unified,
comprehensive, systems-level model (as opposed to computational cognitive models,
which usually focus on a single phenomenon). In their overview of the field, Langley
et al. (2009) argue that “ we should attempt to unify many findings into a single theoret-

ical framework, then proceed to test and refine that theory”, supporting the arguments
of Newell (1973) that “you can’t play 20 questions with nature and win”, highlighting
the importance of systems-level research in the cognitive sciences. Although a few
such cognitive architectures do model spatial mechanisms in navigation space (Har-
rison et al., 2003; Schultheis & Barkowsky, 2011; Sun & Zhang, 2004), they all run
in simple, noise-free environments. According to a comparative table of cognitive ar-
chitectures (Samsonovich, 2011) available in updated form online3, there is currently
no cognitive architecture implementing both Bayesian update and an empirically vali-
dated, psychologically plausible ‘cognitive map’ at the same time.

The present work was motivated by these gaps in the literature, and aims to take
computational cognitive models of navigation-scale4 spatial memory one step closer
to modelling behaviour in realistic environments, such as high-fidelity robotic simula-
tions or physical environments. It aims to do so by means of proposing probabilistic
mechanisms of spatial cognition which are implementable in brains and can repro-
duce behaviour data, and by computationally implementing these mechanisms, in the
form of cognitive models and within an existing cognitive architecture. Situated within
the computational sub-fields of cognitive science (cognitive modelling and cognitive
architectures), the goal of this work is to contribute to the understanding of informa-
tion processing in human cognition. As such, although it is computational in nature,
the extent of its success is determined by its ability to predict and explain the kinds
of behaviour data it is intended to model, as well as its consistency with established
findings in psychology and neuroscience. It is not aiming to maximize the accuracy of
learned spatial representations, unlike robotics. Neither does it aim for neurobiological
fidelity at the cellular level or below. Although building on neuroscientific evidence,

3http://bicasociety.org/cogarch/architectures.htm
4Human cognition needs to keep track of the space of navigation as well as the spaces immediately

around the body (e.g. reachable objects) and of the body (e.g. body-part configurations). Although
uncertainty and noise play are important in the latter two spaces as well, we will confine ourselves to
navigation-scale spatial mechanisms in this work.
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our concern is modelling spatial information processing on Marr’s algorithmic level of
analysis (Marr & Poggio, 1976; Poggio & Marr, 1977), as opposed to e.g. biological
neural networks - see Table 1.1 -, with Chapter 4 being the single exception.

↓ Level of analysis Description In this work

1. Computational
What problem(s) does the
system solve, and why?

Localization,
Map error correction,

Map structuring
2. Algorithmic/

Representational
How might it solve them? (Using

what representations and processes?)
Cognitive models
of spatial memory

3. Implementation How is it implemented physically?
Place, grid, head-

direction, border cells,
... (Hartley et al., 2014)

Table 1.1: Investigating spatial mechanisms on Marr’s (1976) levels of analysis.
The present work is mostly concerned with the second level.

We have investigated the plausibility of Bayesian spatial cue integration both on
Marr’s algorithmic (Chapter 6) and implementation level (Chapter 4), in order to main-
tain the desirable criteria of both psychological and neural plausibility for our other
models. The possible neural implementation of this mechanism has been unknown,
with current mechanistic models of Bayesian inference in brains making assumptions
not fully consistent with the anatomy or activity of the hippocampal complex (the
major brain areas representing world-centered spatial information) - see next Section.
This doubt of biological implementability has motivated our investigation of single-
cell electrophysiological data (acquired outside this PhD) to provide the first evidence
for Bayesian updating in the hippocampus on a neuronal level, and our proposal of a
plausible mechanism for implementing it. This evidence, presented in Chapter 4, af-
fords a degree of biological plausibility to the models utilizing Bayesian mechanisms
in the rest of our work (which is concerned with processes on the algorithmic/repre-
sentational level).

1.2 Probabilistic models of space in brains and minds

Although the focus of most of this work is on the computational modelling of be-
haviour data, we would like the employed mechanisms to be plausibly implementable
in the parts of the brain they functionally correspond to. Apart from the lack of
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neuronal-level evidence that the hippocampal complex may perform Bayesian infer-
ence or even represent uncertainty, the possibility of the implementation of such a
mechanism given the anatomical and electrophysiological constraints of this network
of brain cells is also unclear.

Below, we briefly review probabilistic neural spatial models which have been pro-
posed in the literature (Chapter 3 provides a more general review of computational
cognitive models of spatial memory). We start with normative models of dealing with
spatial uncertainty, which derive optimal solutions to the problem a system might be
solving (Marr’s computational level). We then continue describing mechanistic (im-
plementation level) models which might facilitate these, and their consistency with
what is known about the hippocampal complex. More extensive reviews of Bayesian
models in brains can be found in (Pouget et al., 2013; Vilares & Kording, 2011). There
is currently little experimental support for any of the proposed neural uncertainty rep-
resentations.

Models of probabilistic estimation of spatial information have been pioneered by
(Bousquet et al., 1997), who suggested to use a Kalman filter to model localization
in the hippocampus. A Kalman filter is a dynamic Bayesian inference algorithm for
estimating the values of unknown, not directly observable variables (such as location)
from noisy observations, yielding statistically optimal estimates if the noise is nor-
mally distributed (Kalman, 1960). MacNeilage et al. (2008) also put forth arguments
for dynamic Bayesian inference as a model of spatial orientation. They mention both
Kalman filters and particle filtering (a related Bayesian filtering algorithm using sam-
ples instead of parameters to represent probability distributions), but leave the question
of their neural implementation open. Particle filter-based models of localization on the
algorithmic level have been suggested by (Fox & Prescott, 2010; Cheung et al., 2012).
Osborn (2010) went beyond localization, suggesting a Kalman filtering approach to
also account for localizing objects in the environment. Recently, Penny et al. (2013)
argued that if one presupposes the existence of ‘observation’ and ‘dynamic’ models5,
required by Kalman filters, one might as well extend the inference to also use them for
model selection (‘which environment am I in?’), motor planning (‘how do I get to place
X?’), and to construct sensory imagery (‘what does place X look like?’) in addition
to localization. They have combined these functions in a single probabilistic model,
and argued that it is consistent with findings of pattern replay in the brain. An even

5Observation models and dynamic models are mathematical functions mapping from true states to
observed states, and from pre-motion to post-motion states, respectively.
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more general probabilistic formulation based on dynamic Bayesian inference is the
Free-Energy Principle (Friston et al., 2006), which aspires to provide a unified theory
of brain function, and has been argued to be consistent with aspects of hippocampal
processing (Friston et al., 2011).

Despite their considerable theoretical elegance, the above-mentioned models do
not provide a final and complete answer to the motivating question of this thesis (Sec-
tion 1.1), which can be summarized as: ‘how does biological cognition learn represen-
tations of navigation space from noisy sensors in an uncertain world?’, for two reasons.
First, none of them try to reproduce or show quantitative consistence with either be-
havioural or neural data concerning spatial cognition (although qualitative consistence
with anatomical and neural findings is pointed out by the authors). Although these
models provide explanations, their predictions regarding spatial processing have not
been quantitatively evaluated.

Second, in addition to the lack of quantitative validation, their neural implementa-
tion is not known, and far from straightforward. For example, implementing the kinds
of large matrix inversions and multiplications required by Kalman filters (Kalman,
1960) is easy on a computer, with centrally coordinated, serial, ‘fast’ computations,
but difficult with the kind of distributed, parallel, ‘slow’ (on the level of single neu-
rons, which only spike up to a few dozen times per second) computation performed by
the brain. In the domain of world-centered, navigation-scale spatial mechanisms, any
suggested neural implementation has to conform with not only the limitations imposed
by biological neural networks, but also with the specific connectivity and activity ob-
served in the hippocampal complex, in order to be considered biologically plausible.

In addition to such normative models, a number of mechanistic (implementation-
level) models of how uncertainty and inference could be implemented in brains have
also been proposed. They can be roughly grouped into three categories - see (Pouget
et al., 2013; Vilares & Kording, 2011) for reviews. We briefly summarize these groups
below, together with their consistency with what is known about the hippocampus.

• Probabilistic population codes (PPC) (Ma et al., 2006) encode probability dis-
tributions in the logarithmic domain by means of a set of coefficients of cor-
responding exponential basis functions, each coefficient encoded by the activ-
ity (spike count) of a neuron. They assume neural variability is independent
and Poisson-distributed. However, hippocampal neurons exhibit more variabil-
ity than a Poisson process (Fenton & Muller, 1998; Barbieri et al., 2001). Also,
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if Bayesian inference were implemented in the hippocampus via a PPC, the en-
coded probability distributions would strongly depend on the firing rate of hip-
pocampal neurons: increased firing rates should mean decreased levels of un-
certainty. But empirically, this is not the case - for example, firing rates increase
with movement speed (Maurer et al., 2005), which would mean the lowest uncer-
tainties when running fastest (however, faster movements are harder to control
and should thus lead to higher uncertainty).

• Instead of an encoding in the logarithmic domain, codes in which firing rates
are proportional to probabilities have also been proposed, e.g. by Koechlin et al.
(1999); Barber et al. (2003). The problem with their implementation in hip-
pocampal neurons is that the firing rates of these neurons are also influenced by
factors unrelated to probability, such as where the animal is headed (Ferbinteanu
& Shapiro, 2003) or trial dependent features (Allen et al., 2012), and can change
substantially if either the shape or colour of an environment is altered (Leutgeb
et al., 2005). These influences would strongly interfere with the outcome of the
Bayesian inference, if it were implemented in a code that directly utilizes firing
rates.

• Sampling-based codes represent probability distributions with a set of samples
drawn from them (Fiser et al., 2010). They are asymptotically correct with in-
finitely many samples, and approximations otherwise. Apart from being able to
represent complex, multi-modal distributions, not having to rely on any fixed-
form parametrization such as Gaussians, this also allows reducing their accuracy
and computational demands by restricting the number of samples used. This
property has been used e.g. by (Shi et al., 2010) to explain the deviations from
the statistical optimum in an exemplar model of a reproduction task. It is difficult
to make a general statement as to the implementability of this class of models in
the hippocampal complex, as there is a wide variety of suggested concrete neu-
ral implementations in non-spatial domains (Sanborn (2015) provides a review),
and some applied to navigation space, e.g. (Fox & Prescott, 2010; Cheung et al.,
2012). None of them have been quantitatively validated by neural (electrophys-
iological) measurements, although most of them are supported by behavioural
observations.

How the brain might encode and utilize uncertainty is still an open question (Pouget
et al., 2013), but based on the observations regarding the hippocampus outlined above,
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we argue that a sampling-based code is most suitable in this brain area; in terms of
violating as few empirical observations as possible. We will provide electrophysio-
logical evidence of Bayesian inference from single neurons, and propose a possible
sampling-based mechanism, in Chapter 4 (and in more detail in Appendix A).

1.3 Hypotheses

To achieve goals in a spatially extended, realistic environment, at a minimum, an agent
(e.g. a biological agent such as an animal, or an artificial agent such as a robot) must
be able to 1) move, and keep track of its movements, 2) sense, and interpret its sen-
sations, 3) represent spatial locations in its environment, e.g. of itself and its goal, 4)
update these representations when changes occur in the environment, and 5) utilize
these representations to achieve its goals (e.g. navigate to its goal location, avoid-
ing dangers). Extensive work on all levels of analysis has been carried out for 1)-3),
with the most recent Nobel prize in physiology or medicine awarded on the topic of
3) to John O’Keefe, May-Britt Moser and Edvard I Moser for the discovery of ‘cells

that constitute a positioning system in the brain’ (Burgess, 2014). Specifically, it was
awarded for the discovery of ‘place cells’ in the hippocampus (which show increased
firing in a specific area in the environment, called its ‘place field’), and of ‘grid cells’
which show a regular, grid-like firing pattern (see Chapter 3 below).

We have argued above that despite of the variety of existing models regarding
4)+5), new computational models are needed to move towards biological and psycho-
logical plausibility as well as real-world capability at the same time (since biological
cognition has been shaped by the constraints and challenges of the real world, these
should not be neglected in models of cognition). In particular, in accordance with
the ‘Bayesian brain’ (Knill & Pouget, 2004) and ‘Bayesian cognition’ (Chater et al.,
2010) paradigms, we have suggested approximate Bayesian inference to be a well-
suited mechanism for tackling these challenges. Models on Marr’s algorithmic (and
implementation) level which utilize such a mechanism require a number of underlying
assumptions, some of which can be stated and evaluated as hypotheses.

We summarize major hypotheses in one place in Table 1.2 below, and expand on
them in the respective results chapters below. The first two concern the representation
and manipulation of uncertainty in the hippocampus (required for maintaining approx-
imately accurate location estimates despite noisy sensors and accumulating errors).
Hypothesis 3 is needed since unless all remembered landmark locations are corrected



24 CHAPTER 1. INTRODUCTION

Hypothesis Prediction Empirical support
1 Hippocampal place cells
can perform approximate
Bayesian inference

Place field size depends on
uncertainty (e.g. proxim-
ity of landmarks) in a

Place field sizes (recorded
from hippocampal neurons
of behaving rats) are cor-

2 Spatial uncertainty is
represented as the size of
place cell firing fields

Bayesian fashion related with uncertainties
predicted by a Bayesian
model (Chapter 4)

3 When revisiting a place,
estimates of recently
traversed locations and
encountered landmarks
are updated in an approx.
Bayes-optimal fashion

After revisiting parts of an
environment, place fields
should shift, and recently
active place cells should
re-activate. Errors should
conform to Bayesian pre-
dictions

Neural: none in this work,
but place fields seem to
shift after revisits (Mehta
et al., 2000), and recently
active place cells do reacti-
vate (‘replay’) (Carr et al.,
2011). Behavioural: er-
rors correlate with predic-
tions (Chapter 6)

4 The structure of spatial
representations arises from
clustering

Landmarks which are
co-represented (belong
together) in participants’

Neural: none in this work.
Behavioural: the probabil-
ity of two landmarks being

5 This clustering mecha-
nism operates on features
including Euclidean
distance, path distance,
boundaries, visual and
functional similarity

spatial memory should be
closer in these features
than those not belonging
together

co-represented is strongly
correlated with distances
along these specific fea-
tures. These distances al-
low prediction of partici-
pant representation struc-
ture (Chapter 5)

Table 1.2: Hypotheses of the models presented in this work, and empirical sup-
port. Place cell electrophysiological recording data was acquired outside this PhD. All
other data has been collected by the author, unless otherwise specified.

at every moment (which would likely be intractable), a discrepancy between remem-
bered and actual locations might arise when revisiting a location encountered previ-
ously (when traversing a ‘loop’ in the environment). This discrepancy necessitates a
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backward correction of multiple recent self and landmark locations to maintain con-
sistent representations. The last two are needed to formulate a computational mecha-
nism of spatial representation structure. Structured, hierarchical representations pro-
vide clear computational advantages, such as increased speed and efficiency of re-
trieval search, and economical storage. However, although strong neural (Derdikman
& Moser, 2010) and behavioural (Hirtle & Jonides, 1985; McNamara et al., 1989;
Greenauer & Waller, 2010) evidence exists for such structure, underlying computa-
tional principles have remained largely unknown.

1.4 Outline and Contributions

This thesis is presented in the Alternative Format allowed by University of Manchester
policy 6, which allows incorporating sections in a format suitable for publication in
peer-reviewed journals. We chose the alternative format to more easily accommodate
already published work, to reduce risks of self-plagiarism, and because of the largely
self-contained nature of our individual results chapters. Thus, in what follows, the lit-
erature review (Chapter 3) and the three chapters (4-6) reporting the results, are copies
of papers either accepted by or submitted to peer-reviewed journals. The following list
summarizes these papers and the contributions7 therein:

• Chapter 3: Madl T., Chen K., Montaldi D. & Trappl R., 2015. Computational
cognitive models of spatial memory in navigation space: A review. Neural Net-

works, 65, 18-43.

Contributions: 1) a systematic review of representative cognitive models con-
cerned with navigation-scale spatial memory, falling into symbolic, neural net-
work, or cognitive architecture models, including a comparative table of the
characteristics of these models.

• Chapter 4: Madl T., Franklin S., Chen K., Montaldi D. & Trappl R., 2014.
Bayesian Integration of Information in Hippocampal Place Cells. PLoS ONE

9(3), e89762

6http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=7420
7In all publications, Madl wrote the draft of the paper, developed the software, designed the ex-

periments, recruited and tested the participants where applicable, and analysed the data. Corrections
suggested by Chen, Montaldi, and Franklin were incorporated into the final drafts by Madl after dis-
cussions with these co-authors. All publications were supervised by Chen and Montaldi, with Chen
mainly commenting on mathematical and computational issues, and Montaldi on psychological and
neuroscientific issues.
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Contributions: 2) first quantitative electrophysiological validation of the repre-
sentation of spatial uncertainty in the brain, and of Bayesian integration of spa-
tial information in the brain, in three different environments (using data acquired
outside this PhD). 3) Formulation and empirical support for an inference mech-
anism based on coincidence detection (falling into the camp of sampling-based
models of neural inference)

• Chapter 5: Madl T., Franklin S., Chen K., Trappl R. & Montaldi D., submitted.
Exploring the structure of spatial representations. Cognitive Processing

Contributions: 4) behavioural evidence for clustering as the normative princi-
ple underlying spatial representation structure, and 5) the first computational
model of navigation-scale spatial representation structure on the individual level
(able to predict this structure in participants’ long-term spatial memory from the
geospatial properties of an environment)

• Chapter 6: Madl T, Franklin S, Chen K, Montaldi D & Trappl R, submitted. To-
wards real-world capable spatial memory in the LIDA8 cognitive architecture.
Biologically Inspired Cognitive Architectures

Contributions: 6) integration of three spatial mechanisms capable of dealing with
uncertainty and noise into a comprehensive cognitive architecture (localization,
map structuring, map correction), and 7) embodying this architecture on a robot,
allowing demonstration of the model functionality in a realistic robotic simula-
tor. 8) Proposal of a biologically plausible mechanism for correcting errors in
learned maps when revisiting an already known place (the ‘loop closure’ prob-
lem, well known in robotics, but neglected in cognitive science), and evaluation
against behaviour data regarding cognitive map accuracy in human subjects.

The model best accounting for spatial memory structure presented in Chapter 5 also
constitutes a novel kind of metric learning in machine learning, based on the idea of
learning a similarity function in the space of absolute pairwise differences (as opposed
to e.g. a Mahalanobis distance function). Although proposed before in a similar form
for person re-identification in the computer vision community (Zheng et al., 2011), the
insight that this space contains neglected information which can be utilized to improve
performance in general (not just on image data), and the general formulation allowing
arbitrary constituent models for learning a metric in this space, are a novel contribution

8LIDA stands for Learning Intelligent Distribution Agent, and is reviewed in a paper co-authored
during this PhD but not included in this thesis: (Franklin et al., 2014)
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(9). Since it is too far from the topic of this thesis, metric learning in absolute pairwise
difference space is only described briefly (to the extent required to model cognitive
map structure) in Chapter 5. Applications and results on other kinds of data are briefly
summarized in Appendix E.

Before presenting the papers constituting the literature review and results chapters,
we summarize the major computational methods employed in this PhD in Chapter 2
(they are also described in the respective results chapters). After the computational
methods, we present the literature review (Chapter 3) and results (Chapter 4-6) in the
form of published or submitted papers. Subsequently, we continue to discuss the im-
plications of our results, the neural implementability of these mechanisms, and the
shortcomings and limitations of our models in Chapter 7. We conclude in Chapter 8
with a conclusion and an outline of potential future work opened up by this research.

We note that the line of criticism mentioned regarding the neural implementability
of the high-level probabilistic models of localization in the previous section also apply
to our proposed mechanism of cognitive map structuring (Chapter 5). Although it is
intended to be a cognitive and not a neural model, we have argued that consistency
with the underlying neuroscience can and should play a role in constraining the space
of possible models, and evaluating models, even on the algorithmic level. But the map
structuring mechanism in Chapter 5 is, to our knowledge, the first formal model of the
observed structure in cognitive maps, both on Marr’s computational and algorithmic
levels. We did not have the time and resources to extend it down to include a plausible
neural implementation within this PhD.

Finally, work done during this PhD has resulted in publicly available software for
in-browser 3D spatial memory experiments9, and has contributed to two more publica-
tions which are not included in this thesis (the former because it is a conference paper,
whereas University policy requires alternative format theses to contain journal papers
instead; and the latter because it does not fit in well with the main topic):

• Madl T., Franklin S., Chen K. & Trappl R., 2013. Spatial working memory in
the LIDA cognitive architecture. Proceedings of the International Conference

on Cognitive Modelling (2013), pp. 384-389

• Franklin S., Madl T., D’Mello, S., Snaider, J., 2014. LIDA: A Systems-level
Architecture for Cognition, Emotion, and Learning. IEEE Transactions on Au-

tonomous Mental Development 6(1), pp. 19-41

9https://github.com/tmadl/Cognitive-Map-Structure-Experiment



Chapter 2

Computational Methods

As mentioned in the Introduction, the goal of this thesis is bringing computational
cognitive models closer to being able to function in realistic environments under con-
ditions of uncertainty, by proposing probabilistic models of spatial cognition which are
implementable in brains. Probabilistic models have become successful and widespread
in domains requiring the representation and manipulation of uncertainty, including ar-
tificial intelligence (Russell & Norvig, 2009), robotics (Thrun et al., 2005), and ma-
chine learning (Bishop, 2006). They have also been successfully employed in cognitive
modelling (Chater et al., 2010) and in neuroscience (Knill & Pouget, 2004) - although
there is little empirical evidence for particular neural implementations of probabilistic
mechanisms as of yet (Griffiths et al., 2008; Vilares & Kording, 2011; Pouget et al.,
2013).

This section briefly reviews the computational methods employed in this thesis.
Figure 2.1 shows an overview over all employed methods, and the way they are uti-
lized to support the mechanisms, algorithms, and cognitive models presented below.
Figure 2.2 connects these computational mechanisms to their suggested implementa-
tion in brains (arguments and evidence for the neuroscientific plausibility of Bayesian
localization are presented in Chapter 4).

To be able to plan novel routes in pursuit of its goals, an agent (whether biological
or artificial), at a minimum, needs to be able to localize itself, its goal, and possible
obstacles; and needs to do so in the face of a noisy and inaccurate sensory appara-
tus. From a probabilistic perspective, this localization problem can be described as a
Bayesian network (see Figure 2.2B). In order to avoid having to perform calculations
over every location ever visited, and every landmark ever observed, as done in many
robotics solutions (Durrant-Whyte & Bailey, 2006; Bailey & Durrant-Whyte, 2006),

28
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Figure 2.1: Overview of how the methods in this thesis help support real-world
capable models of cognition, roughly divided into empirical methods (bottom half)
and computational methods (top half). Gray boxes contain data/code used to substan-
tiate or implement some models, but not gathered/implemented by us.

we split it into sub-problems.
Specifically, an approximate solution of this problem can be split into Bayesian

cue integration for integrating noisy observations into a location estimate (Section
2.2), Bayesian localization for maintaining this location estimate through time (Sec-
tion 2.3), and maximum likelihood-based correction for fixing the most recent location
estimates when revisiting a location (Section 2.4). We suggest a rejection sampling-
based algorithm for the former two, implementable through coincidence detection in
hippocampal place cells (Chapter 4), and a gradient descent-based solution for the lat-
ter, implementable by reverse replay in the hippocampus (Chapter 6). We will present
empirical evidence for these claims in those chapters, both from single-neuron record-
ings in live animals (collected outside this PhD) and from behavioural experiments
performed online with participants recruited from Amazon’s Mechanical Turk1.

These mechanisms help inferring spatial locations in the environment from noisy
observations, in a neurally and psychologically plausible fashion, as we will argue be-
low. However, in a system operating under limited time and resources, these locations
also need to be stored efficiently, such that they can be rapidly accessed. Hierarchical
representations facilitate such desirable properties, and have been argued to be preva-
lent in human cognition (Cohen, 2000; Gobet et al., 2001). There is strong evidence

1https://www.mturk.com
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Figure 2.2: Probabilistic spatial localization and mapping implementable by
brains. A: Neural correlates of localization. PRC: Perirhinal cortex, PHC: Parahip-
pocampal cortex, EC: Entorhinal cortex (see Chapter 3 for details; and (Deshmukh
et al., 2013) for evidence of landmark vector cells). B: Probabilistic graphical model
of the simultaneous localization and mapping problem (Thrun & Leonard, 2008). In-
stead of capturing all correlations introduced through the landmarks, which requires
vast computational resources, our model separately solves Bayesian localization with
only local landmarks, and map correction (‘pose optimization’ in SLAM) with only
loop closure constraints. See Chapter 2 for notation and details. C: Illustration of fir-
ing fields during localization. Coloured dots represent spikes of the respective cells at
specific locations. Path integration (grid cells) and boundary and landmark informa-
tion (border cells, landmark vector cells) is integrated in place cells, using coincidence
detection (rejection sampling) to obtain a near-optimal location estimate. This new
estimate is used to update grid cell representations via phase reset to combat accumu-
lating path integration errors (see Chapter 4). D: Illustration of a small loop (firing
fields 1-6) which can be corrected upon recognizing the same landmark at positions 1
and 6 via reverse replay, by reactivating place cells 6-1 and shifting their place fields
proportionally (see Chapter 6).
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that human spatial memories in particular are organized hierarchically (Hirtle & Jonides,
1985; McNamara et al., 1989; Greenauer & Waller, 2010), but the principles under-
lying these structures have not been known. We suggest a Bayesian nonparametric
clustering model for structuring object representations under a subject-specific met-
ric to account for human cognitive map structure (Section 2.5), and present empirical
evidence for this claim gathered from virtual reality and real world environments in
Chapter 5.

These probabilistic models for inferring self locations and object locations and
structuring their representations constitute the pillars of a cognitive software agent
able to function in a realistic robotic simulator, which provides the same interfaces as
a real robot (and would allow this agent to run on a real robot without modifications
to its code) (Rusu et al., 2007). We have implemented this agent within the LIDA
(Learning Intelligent Distribution Agent) cognitive architecture, extending it with a
spatial memory module and the described probabilistic models, integrating them with
the other mechanisms already implemented in LIDA. Describing LIDA is outside the
scope of this thesis, but see the review by Franklin et al. (2014), co-authored during
this PhD.

Figure 2.2 above provides an overview over how the Bayesian mechanisms sum-
marized above may be implemented in spatially relevant brain areas, and pointers to
the parts of this thesis substantiating these connections; lending credence to our claim
that our probabilistic models are neurally plausible (implementable in brains). Chapter
4 provides the first neural-level evidence for Bayesian inference in these brain areas.

2.1 Probabilistic modelling

Probabilistic models use probability distributions to represent quantities and the uncer-
tainties associated with them, utilizing probability theory to manipulate these distribu-
tions (Ghahramani, 2015). Two basic rules provide the foundation, and together yield
Bayes’ theorem, which underlies Bayesian modelling. The sum rule takes the form

p(Y ) = ∑
X

p(Y,X), (2.1)

where p(X ,Y ) is the joint probability of random events X and Y both happening,
and the summation is over all values which Y could possibly take. p(X) is also re-
ferred to as the marginal probability, and the summation in Equation 2.1 is also called
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marginalization (which is especially useful to make inferences about variables of in-
terest by summing out all other variables). The product rule states that

p(Y,X) = p(Y |X)p(X) = p(X |Y )p(Y ), (2.2)

where p(Y |X) is the conditional probability (i.e. the probability of Y given X). Com-
bined, they yield Bayes’ theorem:

p(Y |X) =
p(X |Y )p(Y )

p(X)
=

p(X |Y )p(Y )
∑Y p(X ,Y )

. (2.3)

In the context of a probabilistic model, defined by a number of parameters encoded
in Y (such as the current coordinates of an agents location), and given some observed
data encoded in X (such as the distances to landmarks), we can use Equation 2.3 to
calculate a posterior probability distribution of model parameters, combining prior

knowledge (or assumptions) p(Y ) with the likelihood p(X |Y ).
The sections below summarize computational-level solutions to the problems re-

quired for real-world spatial cognition outlined in Chapter 1 in this probabilistic frame-
work. As mentioned there, the goal of this work is contributing to the understanding of
spatial information processing in brains and minds, and not finding particularly accu-
rate solutions to these problems. Numerous algorithms capable of much more accurate
localization and mapping and making less restrictive assumptions have been proposed
in probabilistic robotics (Thrun et al., 2005), more specifically simultaneous localiza-
tion and mapping (SLAM) - see (Thrun & Leonard, 2008; Durrant-Whyte & Bailey,
2006; Bailey & Durrant-Whyte, 2006) for reviews and (Tuna et al., 2012) for a more
recent evaluation.

Our particular computational-level solutions for estimating locations utilize stronger
simplifications compared to the state of the art in SLAM. We are applying existing
computational and mathematical tools to cognitive and neural mechanisms, following
a long and successful history of this approach in the field of computational cognitive
modelling (Sun, 2008), which can be seen as a branch of applied computer science. In
this field, simplicity and approximations can be assets; since humans are unlikely to
use computationally complex, optimal statistical models (see e.g. (Van Rooij, 2008;
Simon, 1955)). A simpler, sub-optimal model which nevertheless explains empirical
data better, and is more consistent with neural anatomy, is better suited to modelling
cognition than an intractable or implausible optimal model. The implementation of
these abstract methods in a way consistent with the neuroscience and psychology of
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spatial memory is novel, as is their integration with a comprehensive cognitive archi-
tecture and their substantiation with empirical data (see Section 1.4 for the full list of
novel contributions).

2.2 Bayesian cue integration

One concrete application of Equation 2.3 is the inference of the most likely current
location of an animal, given some observations regarding the distance of a number
of landmarks. For simplicity, we assume 1) a uniform prior over these observations,
and 2) conditional independence of the observations given the location. The poste-
rior probability of the current location p(xxx|O), given a location prior p(xxx) and some
observations ooo1, ...,oooN ∈ O (and a normalization constant γ), is

p(xxx|O) =
p(xxx)p(O|xxx)

p(O)
= γp(xxx)p(O|xxx) (2.4)

The prior can be obtained by adding up self-motion signals (a process called ‘path
integration’ or dead reckoning - see Chapter 3). Individual observation distributions
can express distance measurements to landmarks, and can be multiplied due to their
conditional independence given the location:

p(xxx|O) = γp(xxx)
N

∏
i=1

p(Oi|xxx). (2.5)

For now, we further assume that each of these variables is normally distributed.
We will use this simplified formulation to predict the sizes of place cell firing field
in Chapter 4; but will implement our localization model without this restrictive as-
sumption, based on rejection sampling (see next section - if all types of noise were
Gaussian, the formulations would be functionally equivalent, but the sampling model
performs better if this is not the case). The Gaussian assumption makes it straightfor-
ward to derive the variance SL of the normal/Gaussian posterior location distribution
p(xxx|O) = N (xxx;µL,SL) from the variances of the prior and of the likelihood distribu-
tions Sx and So,i (see e.g. Wu (2004) for the derivation of the parameters of products
of Gaussian distributions):

SP = (S−1
x +

N

∑
i=1

S−1
o,i )
−1. (2.6)

In the one-dimensional case, the variance is the square of the standard deviation
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σ. We can say that the standard deviation of a Gaussian distribution is a measure of
the ‘uncertainty’ associated with it (as it measures the spread among possible values
- the more certainly a value is known, the lower the associated σ of the distribution
describing it). Assuming that the observation uncertainties σo,i depend linearly on the
respective distances di, such that σo,i = s · di (Chapter 4 provides justifications and
evidence for this linear relationship), we obtain the standard deviation of the location
posterior for a given set of measurement distances:

σP(d1, ...,dN) =

√
(σ−2

x + s
N

∑
i=1

d−2
i )−1. (2.7)

Chapter 4 uses Equation 2.7 to test the hypotheses that place cells may represent
uncertainty and perform Bayesian cue integration. Although place cells constitute a
two-dimensional representation, this one-dimensional treatment of observation likeli-
hoods is an acceptable approximation in the kinds of environments from which the
data was collected (rectangular boxes without landmarks, where the axes can be as-
sumed to be independent as they are orthogonal, and a very narrow, circular track with
landmarks, where the width can be neglected as it is less than 3% of the length).

Figure 2.3: Bayesian cue integration for localization. Illustration of how an animal
might use its prior location belief (blue) estimated from its movement, and distance
distributions e.g. to a boundary (green) to obtain a corrected location estimate (red)
using Bayesian inference.

2.3 Bayesian localization

To maintain a location estimate through time, the kind of cue integration described
above has to be performed regularly (after every time step). One source of location
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information is adding up each movement vector, a process called odometry in robotics
and ‘path integration’ in cognitive science and biology. However, movements are not
accurate and noise free in real-world environments - each movement vector contains a
slight error, and these errors add up over time. Eventually, these accumulating errors
render the location estimate useless, if sensory information is not used to correct it.

Bayesian localization is concerned with correcting the location estimate in time
using noisy observations (Thrun et al., 2005). Conceptually, it entails performing the
Bayesian cue integration to correct location estimates recursively, after every move-
ment / time step. Its operation can be summarized in three stages, which are performed
iteratively at every time step: 1) movement (adding the current movement), 2) cor-
rection of the location estimate via Bayesian cue integration, 3) updating of the path
integration estimate for use in the next iteration.

Unlike the simplified treatment above, which has considered only one snapshot in
time, Bayesian localization considers the posterior at any time step t. This posterior
distribution has to depend on all movements until now: mmm1:t , on all observations un-
til now: O1:t , as well as the locations of known landmarks lll1:N . Extended by these
dependencies, the posterior location distribution from Equation 2.4 becomes

p(xxxt |mmm1:t ,O1:t , lll1:N) = γp(Ot |xxxt , lll1:N)p(xxxt |mmm1:t), (2.8)

through simple application of Bayes’ theorem. We can use the sum rule (with the sum
replaced by an integral for dealing with continuous distributions) to model the ‘path
integration’ (odometry) mechanism which provides the prior in Equation 2.8:

p(xxxt |mmm1:t) =
∫

p(xxxt |xxxt−1,mmmt−1)p(xxxt−1|mmm1:t−1)dxxxt−1. (2.9)

This equation allows inferring the current location prior based on the most recent
movement mmmt−1 and on the previous location estimate xxxt−1 by marginalizing (integrat-
ing out) the previous location. This is a recursive formulation which yields a path
integration estimate based on a starting location and a number of movements. This
estimate is subject to accumulating errors. However, crucially, the corrected previous
location estimate (previous posterior) can be used instead of the uncorrected previous
path integration estimate. Using this insight, replacing p(xxxt−1|mmm1:t−1) in Equation 2.9
by the previous location posterior p(xxxt−1|mmm1:t−1,O1:t−1, lll1:N) and plugging the result-
ing prior into Equation 2.8 yields



36 CHAPTER 2. COMPUTATIONAL METHODS

p(xxxt |mmm1:t ,O1:t , lll1:N) = γp(Ot |xxxt , lll1:N)
∫

p(xxxt |xxxt−1,mmmt−1)·

p(xxxt−1|mmm1:t−1,O1:t−1, lll1:N)dxxxt−1

(2.10)

This recursive equation for updating location estimates is a Bayes-optimal solu-
tion to the localization problem and allows inferring the current location based on two
conditional densities: a model specifying the effect of movements on the location (a
‘motion model’):

p(xxxt |xxxt−1,mmmt−1) (2.11)

and a model specifying the probability distribution of the current measurements Ot at
a position xxxt given the landmarks lll1:N (a ‘sensor model’):

p(Ot |xxxt , lll1:N). (2.12)

Equation 2.10 is the mathematical formulation of Bayesian localization, which,
conceptually, iterates over the three stages mentioned above: movement (application
of the motion model), correction (via Bayes’ theorem), and update.

As argued in Chapter 4 and Appendix A, the activity of hippocampal place cells can
be viewed as samples from probability distributions, and the size of their firing fields
can be partially predicted by a Bayesian model. We will also argue based on existing
evidence that the ‘motion model’ is implemented by a neural path integrator in the
entorhinal cortex, and that neurons with boundary-related firing might implement the
‘sensor model’.

Such a sampling-based representation of uncertainty in these spatially relevant
brain areas naturally suggests employing a sequential Monte Carlo method (Doucet
et al., 2000) to computationally evaluate the integral in Equation 2.10 (the same model
using samples for representation might as well use them for inference). Although
the usual method of choice in robotics is importance sampling (Montemerlo & Thrun,
2007; Thrun et al., 2005), we approximate the integral using rejection sampling (Doucet
et al., 2000), and will argue in Chapter 4 and Appendix A that coincidence detection
(CD) in hippocampal place cells can implement this mechanism (since CD can filter
out samples at locations where different measurements and path integration disagree,
and keeps the ones where they agree - see illustration in Figure 2.2C, and Appendix A
for mathematical details).
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From a computational point of view, instead of inferring the parameters of the
location posterior distribution (e.g. the mean and variance in case of a Gaussian), we
represent it by sampling multiple location hypotheses. The mean of these hypotheses
corresponds to the ’best guess’ estimate, and their standard deviation to the associated
uncertainty. Apart from the empirical evidence for sampling based mechanisms in the
brain (see Chapter 4, as well as (Fiser et al., 2010) for a more general review), the main
advantage of this approach is the ability to represent free-form distributions (irregular,
non-Gaussian, multimodal distributions etc.).

Particles (samples, hypotheses) xxxi are generated regularly based on self-motion
information (linear and angular movement speed v) according to the motion model
(Equation 2.11), performing path integration at simulated timesteps ∆t. In the simplest
case: xxxi

t = xxxt−1 +mmmt , with mmmt = T (vvv′∆t), and T simply transforming from polar (lin-
ear and angular speed) to Cartesian coordinates. Gaussian noise is multiplied to the
estimated speed to obtain a distribution of hypotheses reflecting the path integration /
odometry uncertainty (neither animals nor robots can estimate their movement speed
with perfect accuracy):

vvv′ = vvvtrue ·N (111,

[
σ2

v 0
0 σ2

ω

]
) (2.13)

where σ2
v and σ2

ω are model parameters representing the variance in the linear and an-
gular speeds, respectively. Since the estimate of vvv is noisy, accumulating errors would
lead to an increase of uncertainty and the corruption of the distribution represented by
the set of particles, which is why correction with the sensor model is required.

Under Gaussian assumptions, this correction can be implemented simply by multi-
plying a path integration prior and a number of sensory likelihoods and solving for the
means and variances (Equation 2.5). The ensuing algorithm for Bayesian localization
is trivial. When using samples instead of a Gaussian to represent the posterior, the cor-
rection can be implemented by rejection sampling (Doucet et al., 2000), i.e. by deleting
hypotheses inconsistent with sensory measurements (see Figure 2.4). The derivation
of why this rejection sampling scheme approximates the true Bayesian posterior can
be found in Appendix A. Details regarding how brains could implement this algorithm
are discussed in Chapter 4.
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Algorithm 2.3.1: MOVEMENT(samples,v,N)

1 : prevmean← mean(samples)
2 : newsamples←{}
3 : for each particle ∈ samples
4 : newsamples← newsamples∪{motionModel(particle,v)}
5 : while count(newsamples)< N
6 : newsamples← newsamples∪{motionModel(prevmean,v)}
7 : return(newsamples)

Algorithm 2.3.2: CORRECTION(samples,O,L)

1 : newsamples←{}
2 : for each particle ∈ samples
3 : likelihood← sensorModel(particle,O,L)
4 : if random()< likelihood
5 : newsamples← newsamples∪{particle}
6 : return(newsamples)

Algorithm 2.3.3: LOCALIZATIONSTEP(posteriorsamples,v,O,L,N)

1 : timestep++
2 : movedsamples← movement(posteriorsamples,v,N)
3 : correctedsamples← correction(movedsamples,O,L)
4 : return(correctedsamples)

Figure 2.4: Bayesian localization algorithm with rejection sampling, producing
updated posterior samples given the samples from the previous posterior, speed vector
vvv and observations O at the current time step, landmarks L, and a particle budget N
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2.4 Maximum likelihood map error correction

Landmark location estimates can be updated in the same way as the agents’ location
estimates xxx, by integrating new observations into the posterior distribution representing
these locations (either in the form of Gaussians or of samples from this distribution).
With infinitely many particles, the algorithm presented in Figure 2.4 would suffice to
maintain correct location estimates.

However, there are practical limits on the particle budget (due to limited com-
putational resources in computers, and due to limited firing rates in neurons). This
necessarily leads to errors whenever there is no particle at the unobservable true lo-
cation. Unfortunately, these errors add up as well. They become most pronounced
when revisiting an already known part of the environment, i.e. when traversing a loop
- although the agent has returned to its starting location, it will think that it is at a new
location, and form new representations of the same place. Multiple such loops can lead
to multiple redundant, erroneous representations.

The problem of how to correct spatial representations when revisiting a known
place (not only the location estimate but also the estimated recent path and landmark
locations) is the ‘loop closing’ problem in robotics (see e.g. (Williams et al., 2009;
Thrun & Leonard, 2008)). Brains need to solve this problem as well - although human
spatial representations are not perfectly accurate, humans are able to correct mistaken
estimates when they recognize a revisited place. Interestingly, despite the abundant
robotics literature on the topic of closing loops, this problem has been largely neglected
in cognitive science literature.

Our cognitive model of loop closing is described in more detail Chapter 6. Here,
we will briefly summarize its purely computational and mathematical aspects. We will
assume that it is sufficient to correct the route taken during the loop, i.e. the most
recent locations of the agent; and that the landmarks are corrected by the same amount
as the location closest to them. That is, when performing large-scale loop closing, the
model in Chapter 6 applies the same correction to a position and the local landmarks
around it (a simplification justified based on neuroscientific evidence in that Chapter).
We also make the assumption that correction only concerns position representations
and not angular representations, once again based on neural evidence. Hippocampal
‘reverse replay’ (Carr et al., 2011) (the re-activation of recently active place cells)
is a plausible mechanism for correcting the recent route when revisiting a location,
as argued in Chapter 6, but such a mechanism has not been found for neurons with
direction-specific firing.
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When revisiting a known place, the recently traversed path has to be corrected
using the discrepancy between the previously and recently estimated location of the
revisited place. Naturally, when an agent recognizes that it is in the same place it has
visited before, the current estimate has to be reset to be equivalent to the previous esti-
mate of the same location. However, it is not obvious how to correct the other recently
visited locations xxx0, ...,xxxm ∈ X along the recent path X . Let ccc1, ...cccm ∈C denote a set
of vectors we will call constraints, each expressing how far apart two locations should
be according to some measurement. That is, each constraint specifies the difference
between two locations ccc = xxxa− xxxb, and each is associated with a measurement uncer-
tainty Sc in the form of the covariance matrix of a normal distribution. For locations
traversed in sequence, ccc and Sc is given by the motion model (by path integration).
For revisited locations, ccc is zero (there should be no difference between the location
estimated when encountering that place first and when revisiting it).

According to Bayes’ theorem, and assuming that constraints are independent given
the locations, the recent path depends on the product of the constraint distributions;
and the best path estimate is the one that maximizes:

P(X |C) ∝

m

∏
i=1

P(ccci|X) (2.14)

Each P(ccci|X) expresses the likelihood that this constraint is satisfied by the path
X , as a Gaussian distribution: P(ccci|X) ∝ N (xxxa− xxxb;ccci,Si) (where xxxa and xxxb are the
location estimates which should have the distance ccci according to this constraint). We
are interested in the maximum of Equation 2.14, which is equivalent to the minimum of
its negative logarithm. Let dddi = xxxa− xxxb− ccci be the discrepancy between the constraint
and the locations it concerns within the path. With noise-free measurements, all di

would be zero; but since sensory errors may add up, there will be discrepancies (e.g.
after traversing a loop, the estimate of the first visit xxxa and second visit xxxb may differ,
but ccci = 0 for the revisited place). Then, the most likely path is given by:

Xml = argmax
X

P(X |C) = argmin
X
−logP(X |C) = argmin

X

m

∑
i=1
||dddi||S−1

i
. (2.15)

Equation 2.15 mathematically describes the maximum likelihood error correction
problem for loop closing. It tries to minimize the discrepancies between the constraints
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and the estimated locations, taking into account the constraint uncertainties Si by uti-
lizing the Mahalanobis distance2 to measure the discrepancy.

There are several ways to solve Equation 2.15. For our cognitive model (Chapter
6), we chose sequential gradient descent, because it can be implemented in biological
neurons (Bengio et al., 2015b,a). Olson et al. (2006) derive the starting point for this
solution. They suggest the following gradient with respect to constraint i, depending
on a learning rate α, a full Jacobian J of the constraints with respect to the path, and
the Jacobian Ji of constraint i:

∆X ≈ α(JS−1J)−1JT
i S−1

i dddi. (2.16)

Because of the incremental structure of the Jacobian, it is possible to simplify this
expression (see Chapter 6). Making use of this structure, and defining a loop precision
parameter Ai = Si/SP specifying the ratio of the uncertainties of loop closure con-
straints (added when revisiting a place) and path integration constraints, the gradient
for each individual location within the loop becomes:

∆xxx j ≈ αdi
∑

j
k=a+1 S−1

i

∑
min( j,b)
k=a+1 S−1

P

= αAidddi p j, (2.17)

where p j = (min( j,bi)− ai− 1)/(bi− ai− 1) denotes how far x j lies along the loop,
with 0 ≤ p j ≤ 1. Unlike usual gradient descent procedures, in this particular case we
know that ∆xxx ≤ dddi must hold, and can prevent the algorithm from overshooting, ac-
celerating its convergence. Figure 2.5 contains the algorithm using this gradient to
correct location estimates when revisiting a place. We will use this algorithm in Chap-
ter 6 to account for human cognitive map accuracy, as a part of a cognitive architecture
embodied on a robot and learning maps in realistic simulated environments.

2.5 Bayesian nonparametrics for map structuring

It has been suggested that map-like spatial representations are structured hierarchically
(Hirtle & Jonides, 1985; McNamara et al., 1989; Greenauer & Waller, 2010), but no
formal model has been put forth for a process that might account for this structure.
We hypothesize in Chapter 5 that this process might be clustering. Computationally,
we chose a Dirichlet Process Gaussian Mixture Model (DP-GMM) to account for the

2The Mahalanobis distance is defined as ||xxx1− xxx2||S =
√
(xxx1− xxx2)T S(xxx1− xxx2)
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Algorithm 2.4.1: CORRECTPATH(X , loopConstraints,α,A,N)

1 : while i < N and not converged
2 : i++
3 : for each a,b ∈ loopConstraints
4 : discrepancy← Xa−Xb
5 : for each j ∈ (a,b]
6 : p← (min( j,b)−a−1)/(b−a−1)
7 : β← min(αA ·discrepancy,discrepancy)
8 : X j← X j +βp
9 : return(X)

Figure 2.5: Algorithm for correcting location estimates when revisiting places
(‘loop closing’), producing a corrected path given the estimates of locations X along
that path (from Bayesian localization), a list of loop constraints indicating the same
(revisited) places (from landmark recognition or place recognition), a learning rate α,
a loop precision parameter A and an iteration budget N

behaviour data we collected (see Chapter 5), for two reasons. First, DP-GMMs (un-
like most clustering algorithms) are able to infer the number of clusters, not just clus-
ter memberships; and are infinitely extensible (Rasmussen, 1999). Second, Bayesian
nonparametric models with Dirichlet priors have a successful history in psychological
modelling, e.g. of category learning and causal learning (Tenenbaum et al., 2011),
transfer learning (Canini et al., 2010), and human semi-supervised learning (Gibson
et al., 2013).

By ‘map structure’, here and in Chapter 5, we mean sub-map memberships. There
is evidence that human spatial maps are hierarchical (Hirtle & Jonides, 1985; McNa-
mara et al., 1989; Greenauer & Waller, 2010), just as geographical maps are - e.g. there
is a map of the country and a map of the cities therein; and any given building may be
represented not only on the country map but also on one of the city maps. Similarly,
any object (e.g. building) memorized by a participant belongs to her map-like spatial
representation (‘cognitive map’), as well as to one of its sub-maps. We only consider
a two-level hierarchy (map and sub-maps); thus, sub-map memberships fully describe
our modelled map structure.

A number of features can influence spatial representation structure, including spa-
tial distance and visual and functional similarity of landmarks. The importance of
these features varies across participants, and these subject-specific importances have
to be accounted for before the clustering process. We chose to implement a new metric
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learning method to do so (see below). Our model of spatial representation structure
consists of these two components: a subject-specific metric, expressing the ‘similar-
ity function’ between two buildings, and the DP-GMM model for clustering buildings
under this metric.

As noted in the Introduction, unlike the rest of our work, we have not shown what
the neural implementation of such a structuring process might look like. Some prior
work exists showing the possibility of inference in hierarchical Bayesian models such
as the DP-GMM, e.g. (Shi & Griffiths, 2009) - see (Sanborn, 2015) for a review. We
have substantiated the psychological plausibility of this model by showing that it can
explain and predict human behavior data (Chapter 5), and leave the investigation of the
biological plausibility of this specific mechanism for future work.

2.5.1 Dirichlet Process Gaussian Mixture Models for clustering

We will only describe the DP-GMM model very briefly, since it is a well-established
model and since we did not implement it ourselves in this work (we used the bnpy

Python library instead). See e.g. (Rasmussen, 1999) for its introduction, or (Gershman
& Blei, 2012) for a tutorial. The DP-GMM partitions a number of data points x into
K clusters by fitting a mixture of K Gaussian distributions to the data. It infers the
number of clusters, as well as the means µµµk and covariances Σk of each Gaussian, by
inverting the generative process defined as follows:

φk ∼ Beta(1,α1)

µµµk ∼ Normal(0,I)
Σk ∼Wishart(D,I)

πk ∼ SBP(φ)

xxxt ∼ Normal(µµµzi
,Σ−1

z,i ),

(2.18)

where SBP stands for the stick-breaking process for generating mixture weights: πk =

vk ∏
k−1
j=1(1−v j). Data can be generated from this model by first choosing a cluster with

probabilities specified by mixture weights: z ∼Cat(π), and then drawing an observa-
tion from the parameters of that cluster xxx∼ Normal(µµµz,Σz).

Given the data, the parameters of this model (i.e. the µµµz and Σz describing each
cluster, and the cluster memberships z of the data points) can be inferred using either a
Monte Carlo chain sampling method (Neal, 2000) or variational inference (Blei et al.,
2006). We did not implement an inference algorithm in this work; instead, we have
used the bnpy Python library for this purpose. See (Hughes & Sudderth, 2013) for
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implementation details.

2.5.2 Metric learning in absolute pairwise difference space

In order to learn a suitable metric for our data, we had to develop a novel metric
learning method, since the assumptions made by existing methods do not hold in our
case. Neither the linear separability assumption (made by linear metric learning), nor
the prerequisite of roughly isotropic variances along the features (made by RBF-based
methods (Ong et al., 2005)) is the case for all subjects in our dataset (see Appendix E
for further motivation and evaluation from a machine learning perspective).

Furthermore, our metric can naturally incorporate the hypothesis that building pairs
belonging to the same representation should be located close to the origin in pairwise
difference space (i.e. they should not be very different), and should be separable from
building pairs belonging to different representations. These two distributions of pair
differences can be naturally modelled using Gaussian distributions (5).

Our proposed method can be seen as a novel approach to perform non-linear metric
learning using weak supervision in the form of pairwise constraints, in order to improve
clustering performance, as pioneered by Xing et al. (2002). The problem to be solved
can be defined as follows. Let X = (xxxi, ...,xxxn) be the feature vector representation
of n objects (buildings on a cognitive map) which are to be clustered (assigned to
representations we will call ‘sub-maps’), where xxxi ∈RD are vectors with D dimensions.
Let the set of m given labelled pairwise co-representation constraints be denoted by C ,
where |C |= m, and ci, j ∈ C is

ci, j =





1, if i and j belong to the same sub-map (co-represented)

0, if i and j belong to different sub-maps (not co-represented)
(2.19)

Our ultimate goal is to group the n objects into K clusters (‘sub-maps’), such that
objects of the same cluster are more similar to each other than to those of different
clusters; taking into account the provided pairwise constraints to learn a good similarity
metric for the given data. In our application of this method to spatial representation
structure, the pairwise constraints express which pairs of buildings are co-represented
in participants’ memory, and are obtained from recall sequences (using the assumption
that co-represented items are always recalled together) - see Chapter 5.

Conventional approaches leveraging non-linear metric learning for this problem try
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to find a kernel Φ such that the clustering resulting from using the distance metric de-
fined by that kernel, d2

m(xxx1,xxx2) = (Φ(xxx1)−Φ(xxx2))
T (Φ(xxx1)−Φ(xxx2)), does not violate

the provided constraints (ensures co-represented pairs are closer than other pairs, if
possible), and often employ RBF kernels for this purpose, e.g. (Baghshah & Shouraki,
2010; Chitta et al., 2011).

In contrast, the proposed framework aims to learn the distribution of co-representation
probabilities (whether or not two object should be linked) from the provided set of con-
straints, and constructs a pseudo-metric based on a generative model of co-representation
probabilities. Crucially, this probabilistic model is defined on the vector space of abso-
lute pairwise differences (APD), which allows learning the importance of each feature
(a challenge for RBF kernels for data with non-isotropic variance). Learning in APD
space has been proposed before by Zheng et al. (2011) (specifically for person re-
identification in computer vision), but not as a general metric learning method. The
metric based on this generative model is a pseudo-metric, because it does not satisfy
the conditions of subadditivity, dm(xxx,zzz) ≤ dm(xxx,yyy)+ dm(yyy,zzz) and the identity of dis-
cernibles, dm(xxx,yyy) = 0 if and only if xxx = yyy.

Let [∆xxxi, j]+ =
(
|xxxi,k− xxx j,k|

)m
k=1 be the representation of each pair of objects (i, j)

in APD vector space. The co-representation probability distribution, i.e. the posterior
probability of any pair of objects belonging to the same cluster, given a pair of objects
and some model parameters θθθ is then

p(c = 1|∆xxx,θθθ) ∝ p(∆xxx|c = 1,θθθ)p(c = 1|θθθ) (2.20)

The likelihood p(c = 1|∆xxx,θθθ), the model parameters θθθ (as well as the prior) can be
estimated from X and C , even in closed form, using Gaussian Discriminant Analysis
(GDA). This yields a suitable non-linear pseudo-metric based on this probability dis-
tribution - see Equation 2.21 -, such that objects likely to belong to the same cluster
will be close, and those likely to belong to different clusters will be far apart; with
these distances directly depending on co-representation probabilities.

dm(xxx1,xxx2;θθθ) = 1− p(c = 1|∆xxx,θθθ) = p(c = 0|∆xxx,θθθ) (2.21)

A metric is well-suited for clustering if within-cluster instances are closer than
across-cluster instances according to it. That is, if for any co-represented ∆xxxr and
not co-represented ∆xxxn it holds that dr(xxxr,1,xxxr,2;θθθ) < dn(xxxn,1,xxxn,2;θθθ). It follows from
Equation 2.21 that this is the case if the generative model learns to separate the absolute
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differences of within-cluster instance pairs from across-cluster pairs.

In the generative GDA model (Bensmail & Celeux, 1996), the likelihoods of a pair
of instances either being co-represented (i.e. belonging to the same sub-map), or not
being co-represented (i.e. belonging to different sub-maps) are each modelled using a
multivariate Gaussian:

p(∆xxx|c = i;µµµi,Σi) = (2π)−
D
2 |Σi|−

1
2 e−

1
2 (∆x−µµµi)

ᵀΣ
−1
i (∆x−µµµi), (2.22)

where i ∈ {0,1}. (µµµ1,Σ1) are the means and covariances of the APD distances of co-
represented pairs, and (µµµ0,Σ0) those of not co-represented pairs. These parameters
can be easily estimated from the given sets of co-represented and not co-represented
object pairs, respectively, by calculating their means and covariances. These object
pairs (obtained from recall sequences in Chapter 5) constitute the training data for the
model.

From Equation 2.22 and Bayes’ theorem, we obtain the posterior probability re-
quired for the metric in 2.21, which then becomes:

dm(xxx1,xxx2;θθθ) = 1− p(∆xxx|c = 1;µµµ1,Σ1)

∑i∈{0,1} p(∆xxx|c = i;µµµi,Σi)
(2.23)

Thus, the trained GDA-model can be used to calculate distances (Equation 2.23)
between all pairs of objects in any testing data set. The data is projected under the
metric in Equation 2.23 using distance-preserving embedding. We have used multi-
dimensional scaling (MDS) for this purpose (Borg & Groenen, 2005). The result of
this projection is a data set embedded such that Euclidean pairwise distances therein,
prescribed by Equation 2.21, reflect the structure in the data (close for co-represented
and far for not co-represented objects).

We subsequently perform clustering of this resulting data, using a Dirichlet Pro-
cess Gaussian Mixture Model (DP-GMM) (Rasmussen, 1999), since the number of
clusters is unknown (see previous section). The resulting algorithm for structuring
map representations is shown in Figure 2.6. It requires training data in the form of
pairs of co-represented and not co-represented buildings and their features. It allows
inferring the metric in closed form and without any hyperparameters that need to be
tuned (unlike most metric learning approaches). We use this algorithm to predict the
representation structure of participants’ cognitive maps in advance in Chapter 5 (and
briefly evaluate its performance on other kinds of data in Appendix E).

We point out that Equation 2.21 constitutes a general framework for metric learning
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Algorithm 2.5.1: PREDICTMAPSTRUCTURE(X ,knownX ,knownStructure)

1 : corepresented←{}
2 : notcorepresented←{}
3 : for i ∈ (1, |knownX |)
4 : for j ∈ (i+1, |knownX |)
5 : if knownStructurei = knownStructure j
6 : corepresented← corepresented∪ (knownXi− knownX j)
7 : else
8 : notcorepresented← notcorepresented∪ (knownXi− knownX j)
9 : µco← mean(corepresented)
10 : Σco← cov(corepresented)
11 : coprior← |corepresented|

|knownX |
11 : µnot ← mean(notcorepresented)
12 : Σnot ← cov(notcorepresented)
13 : not prior← |notcorepresented|

|knownX |
14 : D ∈ R|X |x|X |
15 : for i ∈ (1, |X |)
16 : for j ∈ (i+1, |X |)
17 : Di, j← 1− coprior·N ((Xi−X j);µco,Σco)

coprior·N ((Xi−X j);µco,Σco)+not prior·N ((Xi−X j);µnot ,Σnot)

18 : embedding←MDS(D)
19 : structure← DPGMM(embedding)
20 : return(structure)

Figure 2.6: Algorithm for predicting participants’ spatial representation struc-
ture, given the features of the new buildings to be structured, and given buildings
with known structure (from a previous experiment) specifying which of these build-
ings were co-represented.

using any model capable of producing probability estimates that two instances belong
together. This includes the entire family of generative models in machine learning (see
e.g. (Bishop, 2006)), as well as any discriminative model when combined with Platt
scaling (Platt et al., 1999) for transforming discrete outputs into probabilities. Con-
strained clustering is just one application of such a metric - approaches for metric learn-
ing have been used for a wide range of tasks including face and activity recognition,
text and music analysis, microarray data analysis, etc. (Kulis, 2012). See Appendix E
a brief evaluation of the proposed metric on constrained clustering benchmarks.
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1. Introduction

A wealth of neurophysiological results from human and animal
experiments have, in recent years, helped shed light on the mech-
anisms and brain structures underlying spatial memory. Although
it is possible to investigate spatial cognition purely from the point
of view of one of the cognitive sciences, interdisciplinary analy-
ses at the level of behavior as well as underlying neural mecha-
nisms provide a more solid foundation and more evidence. Within
the broader scope of cognitive sciences involved in investigating
memory systems, such as psychology and neuroscience, computa-
tional models play a unique and important role in helping to in-
tegrate findings from different disciplines, as well as generating,
defining, formalizing, and testing, and generating hypotheses, and
thus helping to guide research in cognitive science.

There are multiple relevant reviews concerning the psychology
of spatial cognition (Allen, 2003; Tommasi & Laeng, 2012) as well
as its underlying neuroscience (Avraamides & Kelly, 2008; Burgess,
2008; Moser, Kropff, &Moser, 2008; Tommasi, Chiandetti, Pecchia,
Sovrano, &Vallortigara, 2012). Although someof these reviews also
mention the occasional computational model, no systematic re-
view of computational models of spatial memory has been pub-
lished in the last decade (note that Trullier, Wiener, Berthoz, &
Meyer, 1997 have reviewed biologically based artificial navigation
systems, andMark, Freksa, Hirtle, Lloyd, & Tversky, 1999 published
a review of models of geographical space). The main contributions
of the current paper lie in providing a reviewof computational cog-
nitivemodels of spatialmemory (taking into account implemented
models of cognition across disciplines, including psychology, neu-
roscience, andAI); providing a comparison of thesemodels; report-
ing possible underlying neural correlates corresponding to parts of
these models to aid comparison and verification; and finally out-
lining open questions relevant to this field which have not been
fully addressed yet.

1.1. Spatial memory and representations

Biological agents such as mammals, as well as embodied au-
tonomous agents, exist within spatially extended environments.
Given that these environments contain objects relevant to the
agent’s survival, such as nutrients or other agents, they need to take
the positions of these objects into account. The purpose of spatial
memory is to encode, store, recognize and recall spatial informa-
tion about the environment, and the objects and agents within it.

Spatial representations can be categorized based on the refer-
ence frame used. Egocentric representations represent spatial in-
formation relative to the agent’s body or body parts. In contrast,
allocentric representations represent spatial information relative
to environmental landmarks or boundaries, independent of their
relation to the agent. We will return to these types of representa-
tions, and the way they are encoded in mammalian brains, in Sec-
tion 2.

In addition to navigation space – the space of potential travel –
other forms of spatial representation have also been considered in

the literature (e.g. representations of the positions of body parts
or external representations such as maps or diagrams—Tversky,
2005).

In this review, we will focus on representations of navigation
space and the space around the body, because the largest num-
ber of computational cognitive models account for them, and also
because they are the most ubiquitous and generalizable represen-
tations. Whereas information concerning the space of the body
strongly depends on the specific form of embodiment (such as
body size and shape), and the use of external spatial represen-
tations is exclusive to humans, the types of representations and
strategies required for navigation space are similar for different
kinds of bodies and agents.

1.2. Relevance of computational cognitive models to spatial memory
research

Computational models attempt to formally describe a part (or
parts) of cognition in a simplified fashion, allowing their simula-
tion on computers (McClelland, 2009; Sun, 2008b), and providing
more detail, precision, and possibly more clarity than qualitative
descriptions. In addition, computational models might facilitate
the understanding and clarification of the implications of a theory
or idea, in ways that would be difficult for humans without sim-
ulation on computers (McClelland, 2009). Since spatial memory is
an interdisciplinary research area (drawing on at least psychology,
neuroscience, and artificial intelligence), involving multiple repre-
sentations and processes, it is especially important to formulate
theories precisely, using a common language. Computationalmod-
els can provide such a common ground.

The development of computational cognitive models also re-
quires making a large number of design decisions, possibly lead-
ing to novel hypotheses, which can then be evaluated. This process
usually constitutes an ongoing cycle of development, testing, and
revision. Critically, most of this is performed on a computer and
thus can be quick and efficient.

This efficiency is especially important for modeling mecha-
nisms with representations that are not easily explicated or mea-
sured directly, such as in the case of spatial cognition. Humans
cannot easily report the structure of their spatial representations
and the mechanisms operating on them. There are a large num-
ber of structures and mechanisms that could partially account for
spatial skills (e.g. navigation), and a time-efficient way of defining
them, and investigating their implications in an automated fashion
is important to facilitate the evaluation of their plausibility.

Once a theory or hypothesis has been encoded computationally,
generating predictions from it is a straightforward matter of
providing model parameters and input data, and running the
model on a computer. This is usually more efficient than obtaining
experimentally verifiable predictions from a verbal/conceptual
theory. The predictions can subsequently be tested or verified
using data obtained from empirical experiments with humans
or animals, and comparing this data with the model predictions



20 T. Madl et al. / Neural Networks 65 (2015) 18–43

(usually employing some statistical measure of model fit; Pitt,
Myung, & Zhang, 2002).

Once in possession of the empirical data, both the prediction
and the testing can be performed by running computer programs.
Since this process is automated, it takes little human effort. This
is a general advantage of computationally formulated models, but
is especially useful for spatial memory models, since experiments
investigating spatial cognition using the classical, iterative cycle
of hypothesis formulation, prediction derivation and testing
(Godfrey-Smith, 2003) usually require multiple, sometimes large
environments (especially for navigation-scale spatial memory),
and are thus impractical and time consuming to perform in the
real world. In contrast, computational cognitive models of spatial
memory can be run in a large number of different simulated
environments, with different parameterizations, over a short
period of time and with little effort.

1.3. Motivation for the proposed neural mappings

Since cognitive modeling is concerned with describing and ex-
plaining cognitive phenomena, they should behave the same way
as humans (or animals) do. Comparison of model predictions with
behavioral evidence, ‘goodness of fit’, is themostwidespreadquan-
titative method of evaluating, judging and comparing cognitive
models (Pitt et al., 2002). In addition to fit, model complexity and
generalizability can (and should) also be analyzed qualitatively.
Frequently employed qualitative criteria include explanatory ade-
quacy, interpretability, and biological plausibility or realism (Cas-
simatis, Bello, & Langley, 2008; Myung, Pitt, & Kim, 2005).

Despite these criteria, the space of models possibly accounting
for experimental data is under-constrained. There can be multiple
models of comparable complexity achieving comparable goodness
of fit, and there might not be enough empirical data available
for full evaluation. Furthermore, it is often difficult to compare
cognitive models along qualitative dimensions. For example, there
is no consensus on which models are biologically plausible (there
are large differences between different approaches, ranging from
spiking neural network models with parameters derived directly
from electrophysiological measurements to AI-based methods
described as ‘biologically inspired’ based on vague functional
similarity). Many authors of cognitive models describe their work
without establishing how parts of their model relate to the
functionally similar biological implementation, making it difficult
to judge the degree of correspondence to the brain.

Since cognition is implemented by the brain, cognitive model-
ers would do well to take into account the known neuronal mech-
anisms underlying the cognitive phenomena they are trying to
model, even if not aiming to be highly biologically accurate. We
will propose tentative neural mappings of the models reviewed in
this paper for the following reasons. First, such mappings might
help assess the biological realism of models claiming to be biolog-
ically plausible, based on the degree of structural and functional
correspondence betweenmodels and the neural areas implement-
ing the cognitive mechanisms they account for. Since cognition is
implementedby the brain, close similarity between cognitivemod-
els and their neural counterparts is desirable (whether structural,
functional, paradigmatic, or otherwise). Clarifying neuronal corre-
spondencemight also help provide an additional quantitative eval-
uation criterion, by facilitating possible future verification using
neuronal data—such as imaging data from humans or electrophys-
iological data from animals.

Interestingly, such neuronal data can help in substantiating a
model even if there is very little similarity between the elementary
units of amodel and the brain (as is the casewith symbolicmodels,
which usually employ local and amodal symbols for representa-
tions, as opposed to the distributed and grounded representations

of the brain). A good example is the ACT-R cognitive architecture,
which is primarily symbolic but nevertheless has been shown to
be capable of not only fitting brain imaging data, but roughly pre-
dicting activation levels of brain areas (Anderson, Fincham, Qin, &
Stocco, 2008; Qin, Bothell, & Anderson, 2007). This shows that it
is possible even for high-level cognitive models which have little
to do with biological neurons to contribute to and guide research
in neuroscience; and that results in neuroscience can guide the de-
velopment and parameter adjustment of suchmodels despite their
structural differences. Thus, the mapping between model compo-
nents and brain areasmight be interesting even for neuroscientists
uninterested in pure cognitivemodeling, or cognitivemodelers un-
interested in pure neuroscience.

Finally, relating models and their components to brain areas
with known functions can facilitate their explanation, especially
for readers with a background in cognitive neuroscience or psy-
chology. Such mappings also help clarify and explicate structural
differences and similarities between individual cognitive models.

2. Neural correlates of spatial representations

Since this review is targeted mainly at researchers in cognitive
modeling, who might not be deeply familiar with the details of
the neurophysiology of spatial memory and spatial cognition, we
briefly summarize the neuroscientific literature concerning how
mammalian brains represent navigation space.1

This section is intended to provide a basis for the neural map-
pings of model parts (to provide further plausibility constraints, an
additional basis for comparisons, and a functional guide for model
parts). Our descriptions of the neural correlates of spatial represen-
tations are biased toward describing areas known to be important
and with (more or less) known functions, and are not meant to be
a complete review of all brain areas related to spatial cognition.
See Burgess (2008) and Moser et al. (2008) for more comprehen-
sive reviews of spatial cognition in the brain, and Kravitz, Saleem,
Baker, andMishkin (2011) for an overview of areas associatedwith
visuospatial processing.

2.1. Allocentric spatial memory

Four types of cells play an important role in processing allocen-
tric spatial representations in the mammalian brain, established
mostly through single-cell electrophysiological recording studies
frommammals (the following list is based onMadl, Franklin, Chen,
Montaldi, & Trappl, 2014)—see also Fig. 1:

1. Grid cells in themedial entorhinal cortex (MEC) show increased
firing at multiple locations, regularly positioned in a grid across
the environment consisting of equilateral triangles (Hafting,
Fyhn, Molden, Moser, & Moser, 2005). Grids from neighboring
cells share the same orientation, but have different and ran-
domly distributed offsets,meaning that a small number of them
can cover an entire environment. It has been suggested that grid
cells play a major role in path integration (PI),2 since their acti-
vation is updated depending on the animal’s movement speed
and direction (Burgess, 2008; Hafting et al., 2005;McNaughton,
Battaglia, Jensen, Moser, & Moser, 2006). There is evidence to

1 We apologize to readers who are already familiar the information in this
section.
2 Path integration refers to the integration of self-motion signals to maintain a

location estimate; also called dead reckoning. A disadvantage of exclusively using
path integration to estimate current location is that errors or noise accumulate upon
eachmovement, increasing until it eventually renders the location estimate useless,
unless corrected by allothetic sensory information Etienne, Maurer, and Séguinot
(1996).
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Fig. 1. Grid cells, place cells, boundary-related cells, head-direction cells, and the neuronal basis of self-motion information. A.–D.: Four cell type firing fields associated
with allocentric spatial representation; as well as reviewed models accounting for them. A. Regular grid cell firing pattern from rat intracranial recording (black lines: rat
trajectory, red dots: placeswhere grid cell showed increased firing). B. Hippocampal place cell firing pattern (A and B fromBurgess, 2008). C. Firing pattern of a head-direction
cell tuned to about 150 allocentric direction (relative to distal landmarks or boundaries). D. Firing fields of ‘boundary vector cells’ identified in the rat entorhinal cortex. In
specific areas of the environment (highlighted with hot colors) these cells exhibit increased firing rates (from Solstad et al., 2008). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

suggest that grid cells exist not only inmammals, but also in the
human entorhinal cortex (EC) (Doeller, Barry, & Burgess, 2011).
In contrast toMEC, neurons in the lateral EC exhibit little spatial
modulation, and are instead highly selective to sensory stimuli.

2. Head-direction cells (HD cells) fire whenever the animal’s
head is pointing in a certain direction. The primary circuit re-
sponsible for head direction signals projects from the dorsal
tegmental nucleus to the lateral mammillary nucleus, anterior
thalamus andpostsubiculum, terminating in the entorhinal cor-
tex (Taube, 2007). There is evidence that head direction cells
exist in the human brain within the medial parietal cortex
(Baumann & Mattingley, 2010).

3. Border cells and boundary vector cells (BVCs) are cells with
boundary related firing properties. The former (Lever, Burton,
Jeewajee, O’Keefe, & Burgess, 2009; Solstad, Boccara, Kropff,
Moser, &Moser, 2008) seem to fire in proximity to environment
boundaries, whereas the firing of the latter (Barry et al., 2006;
Burgess, 2008) depends on boundary proximity aswell as direc-
tion relative to the mammal’s head. Cells with these properties
have been found in the mammalian subiculum and entorhinal
cortex (Lever et al., 2009; Solstad et al., 2008), and there is also
some behavioral evidence substantiating their existence in hu-
mans (Barry et al., 2006).

4. Place cells are pyramidal cells in the hippocampus which ex-
hibit strongly increased firing when the animal is in specific
spatial locations, largely independent from orientation in open
environments (Burgess, 2008; O’Keefe & Dostrovsky, 1971),
thus providing a representation of an animal’s (or human’s Ek-
strom et al., 2003) location in the environment. A possible ex-
planation for the formation of place cell firing fields is that
they emerge from a combination of grid cell inputs on different
scales (Moser et al., 2008; Solstad, Moser, & Einevoll, 2006). It
has also been proposed that place fieldsmight bemainly driven
by environmental geometry, arising from a sum of boundary
vector cell inputs (Barry et al., 2006; Hartley, Burgess, Lever,
Cacucci, & O’Keefe, 2000); or by a combination of grid cell and
boundary vector cell inputs (Madl et al., 2014). Apart from
information about the current spatial location, hippocampal
place cells also participate in place–object associations (Kim,
Delcasso, & Lee, 2011; Manns & Eichenbaum, 2009), associ-
ating place cell representations of specific locations with the
representations of specific objects in recognition memory (the
perirhinal cortex, among others, is heavily involved in recogni-
tion memory for objects—Brown & Aggleton, 2001; Yonelinas,
Otten, Shaw, & Rugg, 2005). In addition, in the primate hip-
pocampus, view-dependent instead of place-dependent cells
have also been identified (dubbed spatial-view cells Rolls & Xi-
ang, 2006). Finally, an interesting cell type with spatially lo-
calized firing activity has been found in the medial prefrontal
cortex (mPFC), representing goal or reward locations (Hok,
Save, Lenck-Santini, & Poucet, 2005).

Hippocampal place cells seem to encode long-term allocentric
spatial representations of environments (this is suggested by
the spatially localized firing of place cells, the observation that
this firing did not depend on heading direction and remains
stable in an environment for several weeks, and finally the
associations between place cells and specific objects). It has been
argued that multiple such representations are learned for different
environments, with different frames of reference and on different
scales. Evidence for this includes the observation that place cells
‘re-map’ when rats enter a new environment (the firing fields
of the same cells reflect a completely different map in different
environments), and the observation that their firing field sizes can
significantly differ (Derdikman & Moser, 2010).

Allocentric representations allow not only the storage and sub-
sequent recall of remembered routes, they also allow the calculat-
ing of novel routes, shortcuts or detours (important especially after
changes in the environment, e.g. when a known route is blocked).
Furthermore, it is possible to keep track of more allocentrically en-
coded object positions than egocentric positions—since the latter
are encoded relative to the agent and thus require updates as the
agent moves through the environment, making accurate egocen-
tric representations of large numbers of objects intractable.

Such allocentric representations of physical locations in the
environment have been called ‘cognitive maps’ – a term coined
by Tolman (1948) – and there is substantial evidence that the
hippocampal–entorhinal complex is the main neural correlate
involved in their storage and recall (Moser et al., 2008).

Another proposed form of allocentric representation is a topo-
logical map. Topological maps lack metric information (such as
distances or directions), but provide adjacency and containment
information and thus allow route planning as well (although plan-
ning optimal routes can be difficult) (Booij, Terwijn, Zivkovic, &
Krose, 2007). There is no well-established neural correlate of pos-
sible topological representations in the brain; although compu-
tational models with topological assumptions have successfully
accounted for some hippocampal experimental data (Chen, Kloost-
erman, Brown, & Wilson, 2012; Dabaghian, Cohn, & Frank, 2011)
(and there is some neural evidence for the involvement of poste-
rior parietal cortex (PPC) Calton & Taube, 2009 and retrosplenial
cortex (RSC) Epstein, 2008).

2.2. Egocentric spatial memory

For humans and primates, vision is the primary perceptual
modality, having the largest cortical area associated with its
processing. There are multiple pathways originating from the
visual cortices. Apart from a pathway supporting object vision
along ventral areas (the ‘what’ pathway), two others have been
proposed which are relevant for spatial memory.

The primary visual cortex (V1) located in the occipital lobe
projects visual information through higher visual cortices to
the Posterior Parietal Cortex (PPC). The parieto-medial temporal
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pathway connects this occipito-parietal circuit with areas in
the medial temporal lobe including hippocampal, entorhinal and
subicular areas involved in processing long-term allocentric spatial
representations supporting spatial navigation (see above) (Kravitz
et al., 2011).

On the other hand, many brain areas involved in the represen-
tation of egocentric space reside in the posterior parietal cortex.
Posterior parietal areas can be said to extract object positions rel-
ative to the agent from sensory information. Patients with parietal
lesions might have intact primary sensory and motor representa-
tions, but often suffer from spatial neglect—they are unable to per-
ceive one side of space (Husain, 2008).

Evidence suggests that the precuneus is the main brain area
concerned with multiple types of egocentric representations, as
well as transformations between them (Kravitz et al., 2011;
Vogeley et al., 2004; Zaehle et al., 2007). The precuneus seems to
coordinate spatial processing in the reference frames of the eyes
and the head with controlling body and limb-centered actions (in
addition to the intraparietal and postcentral sulci and the parieto-
occipital region; Plank, 2009; Vogeley et al., 2004)—for example,
area 5d within this parietal area seems to represent reach vectors
(hand position relative to reach target).

Neuropsychological studies have also implicated the lateral in-
traparietal area (LIP) in representing visual stimuli in the reference
frame of the body (Snyder, Grieve, Brotchie, & Andersen, 1998),
the ventral intraparietal area (VIP) containing receptive fields with
head-centered reference frames Duhamel, Colby, and Goldberg
(1998), the medial intraparietal area (MIP) in the encoding of ob-
ject locations in eye-centric coordinates (Pesaran, Nelson, & Ander-
sen, 2006), and area 6a (Marzocchi, Breveglieri, Galletti, & Fattori,
2008). The latter two areas have also been called the ‘parietal reach
region’ and seem to encode the location of reach targets in an eye-
centered reference frame (Bhattacharyya, Musallam, & Andersen,
2009). (See Kravitz et al., 2011 for a detailed review of visuospatial
processing in the brain.)

Finally, the retrosplenial cortex (RSC) and the parahippocampal
place area (PPA) in the parahippocampal cortex both seem to be
involved in the visual representations of places, since they respond
strongly to scenes such as landscapes or cityscapes but weakly to
non-scene objects (such as animals or small objects).

Apart from visuospatial representations, the basal ganglia also
play an important role in egocentric navigation, and are thought
to associate a cue with a reward (Packard & McGaugh, 1996),
triggering guidance behavior along a known route. The basal
ganglia can thus encode the body turns/directions to take when
landmarks are recognized, depending on the spatial relationship
between the landmark and the body (e.g. turn left at the big
tree). This encoding allowsnavigation based on simple associations
between actions and egocentric spatial relations (also called ‘taxon
navigation’, as opposed to ‘locale navigation’ which requires
allocentric spatial representations). This taxon strategy seems to
be in use mainly when a route is well-known (Hartley, Maguire,
Spiers, & Burgess, 2003). In contrast, novel route planning requires
additional allocentric representations (see previous section).

2.3. Structures involved in transformation

Since sensory information is perceived from the reference
frame of the observing agent, allocentric spatial representations
must be built via transformation of the sensory input. Furthermore,
allocentric information has to be transferred back into an
egocentric reference frame in order to allow spatial actions.

Because of its interconnectionswith brain areas associatedwith
both egocentric and allocentric spatial representations, it has been
suggested that the RSC is involved with translations of frames
of reference. The RSC receives direct inputs from visual areas V2

and V4, and egocentric sensory information from parietal areas 7a
and LIP, among others; as well as inputs from the hippocampal
formation and the anterior thalamus usually associated with
allocentric position and heading information (Vann, Aggleton, &
Maguire, 2009).

Area 7a in the posterior parietal cortex is another area strongly
connected to both the medial temporal areas associated with
allocentric representations, and the parietal areas associated with
egocentric representations. Thus, area 7a could also play a role
in transforming between reference frames. For example, neurons
in area 7a can transform viewer- to object-centered spatial
information (Byrne, Becker, & Burgess, 2007; Crowe, Averbeck, &
Chafee, 2008).

2.4. Structures involved in associative and reward-based learning

Hebb’s rule is a prevalent and frequently modeled associative
learning rule, which is based on the idea of activity-dependent
synaptic modification, and proposing that a change in the strength
of a connection is a function of the neural activities of the con-
nected neurons. Hebbian learning is often summarized as ‘neu-
rons that fire together, wire together’. There is strong empirical
evidence for such a learning mechanism ubiquitously occurring in
brains (Song, Miller, & Abbott, 2000). This learning rule is critical
for associative learning in spatial memory paradigms—for exam-
ple, for learning associations between the representation of a rat’s
current location, and sensory stimuli at that location. In a variant
of Hebbian learning, called competitive learning, neurons of one
population compete with each other to respond to the pattern ap-
pearing in another population from which they receive input (the
more strongly a neuron responds to the input, the more it inhibits
other neurons, and the more its connection strengths to highly ac-
tive input neurons increase) (Grossberg, 1987; Kaski & Kohonen,
1994; Rumelhart & Zipser, 1985).

As opposed to the unsupervised, associative Hebbian learning
rule, reward-based learning is also frequently observed in spatial
memory experiments. As mentioned above, the mPFC seems to be
involved in representing goal or reward locations (Hok et al., 2005)
(and has also been suggested to be involved in responding to re-
wards). Animals including humans have a propensity to seek out
rewards, and are able to learn the spatial locations of such rewards.
The primary neural correlates of reward-learning include the or-
bitofrontal cortex (OFC, which seems to encode stimulus reward
value), the amygdala, and the ventral striatum; all three show in-
creased activity during the expectation of a reward. The dopamine
system also plays an important role, being involved in the signal-
ing of error in the prediction of reward (presumably aiding learn-
ing and facilitating the improvement of reward predictions). To
select an action based on an expected reward, stimulus–response
or response–reward associations have to be learned; empirical
evidence implicates the dorsal striatum in this process (which
exhibits increased activity when a contingency is established
between responses and reward) (Maia, 2009; O’Doherty, 2004).

Reinforcement learning theory has been used in attempts to
mathematically formalize the process of reward-based learning
through interacting with an environment. Reinforcement learning
(RL) agents represent the world as a set of states S, a set of actions
A possible in each state and leading to a new state, and possible
rewards r. They learn from the consequences of their actions, and
try to select actions based on past experiences (exploitation) as
well as novel choices (exploration). The name comes from the
reinforcement signal – a numerical reward – used in such models;
RL agents aim to choose actions that maximize the reward they
obtain over time (Woergoetter & Porr, 2008). It has been argued
that mathematically derived solutions to RL can plausibly be
implemented in brains, based on the reward-relevant brain areas
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listed in the previous section (explainingRL and its correspondence
to brains would exceed the scope of this paper; see Maia, 2009 for
an explanation and review of evidence). Reinforcement learning
can be used to learn which action to take in each location, e.g. to
learn how to navigate to a food source (see also Fig. 4 and some of
the models reviewed below).

3. Computational cognitive models of spatial memory

3.1. Introduction

Computational models attempt to formally describe an aspect
(or aspects) of cognition in a simplified fashion, allowing their
simulation on computers (McClelland, 2009; Sun, 2008b). Compu-
tational cognitive modeling is concerned with achieving a better
understanding of various cognitive functionalities through compu-
tational models of representations, mechanisms, and processes.

Cognitive models should be functional—they should perform
well at the task they were designed for (which can be difficult,
especially for challenging tasks such as trying to robustlymap real-
world environments).

Psychological or cognitive plausibility are also important—these
models aim to model cognitive phenomena (spatial memory and
associated processes), and should correspond to them as closely as
possible in terms of the mechanisms, processes, and representa-
tions employed, and behavioral measures produced. They should
account for empirical data as well as possible (high ‘goodness of
fit’), and should do so in the simplest possible way (low complex-
ity), making as few unsubstantiated assumptions as possible. They
should also have the ability to generalize to new data, not only ac-
count for the data provided to the model during development and
training (Myung et al., 2005).

Cognitivemodels should also be as biologically plausible as pos-
sible within their paradigm. Although many cognitive models are
not concerned with the physiological details of neural function-
ing (with the exception of biological/spiking neural networks—see
Section 3.4), the underlying neuroscience of the modeled cogni-
tive phenomena is nevertheless arguably relevant. Functions of
the mind are implemented in brains; thus, neuroscience can pro-
vide valuable input regarding the structure and function of plau-
sible models, even for those not intending to model the neuron
level. Further advantages of taking neural implementation into
consideration include constraining the model space (reducing the
large number of algorithms possibly accounting for given behav-
ior data), providing additional evaluation criteria, and facilitating
model comparison by establishing analogies between representa-
tions in models and in brains (see also Section 1.3).

Clarification of the elemental units used by models, and how
they relate to neural substrate, is critical in evaluating biological
plausibility. The correspondence does not need to be on the neu-
ron level—symbolic cognitive models can also structurally corre-
spond to brains on a higher level (e.g. on the level of brain areas
and their connectivity). Explicating the correspondence between
model components and brain areas, as done by the researchers
of ACT-R (Anderson et al., 2008) (who have also performed brain
imaging experiments for validation), helps to verify structural sim-
ilarity between the model and the corresponding neural substrate,
and thus also to evaluate claims of biological plausibility. Describ-
ing such neural mappings is one of the aims of this section, as well
as establishing tentative mappings based on functional correspon-
dence in cases where the authors did not explicitly describe them
in their work, as is the case for the majority of models outside of
computational neuroscience.

Clarification of the following properties is also important in
characterizing computational models of spatial memory (partially

based on O’Reilly, 1998 and Webb, 20013).

• The level of modeling (characterizing the elemental units),
• The types of representation accounted for (e.g. egocentric,

allocentric, metric, topological)
• The learning mechanism, if any (e.g. Hebbian learning, rein-

forcement learning)
• The generality and abstraction of the models (the range of phe-

nomena accounted for, and complexity relative to the modeled
phenomena)

• Structural similarity (how well models represent the underly-
ing neural mechanisms)

• Performancematch or ‘goodness of fit’ to behavior data (towhat
extent themodel canmatch target behavior; useful for compar-
ing different models of the same phenomena).

It is important to note that this review is limited to computa-
tional models of cognition concerned with navigation space, that
were published in the last twodecades,4 and as such excludesmod-
els of diagrammatic spatial reasoning, models of low-level sensory
representations, robotic models unconcerned with biological cog-
nition, and other models which might include spatial information
on a different scale or for a different purpose. Furthermore, we ex-
clude reactive navigation models without representations, which
might allow agents to solve problems in space, but cannot be said
to model spatial memory.

Finally, we do not claim to review every single model involving
spatialmemory (such an endeavor could fill a book); the aim of this
review is to summarize representative models for major modeling
directions (of any set of models which are highly similar in terms
of paradigm, structure and functionality, only the most recent one
is reviewed; similarly, if the same first author publishes multiple
times on a model, only the most recent version of the model is
included).

3.2. Overview

The spatialmemorymodels reviewed in this section are divided
into three categories, inspired by major modeling paradigms in
the field of computational psychology (Sun, 2008a). The section
‘symbolic spatial memory models’ describes models emphasizing
explicit rules and localist representations based on symbolic
logic (Bringsjord, 2008). In contrast, ‘neural network-based spatial
memorymodels’ are based on a number of simple processing units
affecting each other via weighted connections, operate in parallel,
usually employ distributed representations, and commonly learn
rules from training data instead of encoding explicit rules (Thomas
& McClelland, 2008). Finally, we also review a number of spatial
memory models that are a part of cognitive architectures (which
are concernedwithmodeling awide range of cognitive phenomena
in addition to spatial memory, and are often employing a
combination of the mentioned paradigms).

We have confined our survey to these relevant categories and
model types to keep it within the limited space available.

Each of these types of models have different strengths and roles
in modeling and understanding spatial memory. Symbolic models

3 Criteria specific to neuroscience and unimportant for characterizing purely
cognitive models have been excluded.
4 We used the academic search engines Scopus, JSTOR, Google Scholar, Microsoft

Academic, and arXiv; searching for keywords (and their combinations) relevant
to this review, including computational, cognitive, spatial, models, spatial memory,
cognitive map, hippocampus, place cells, egocentric representations, allocentric
representations, navigation, orientation, localization, mapping, SLAM, symbolic,
connectionist, cognitive architectures. Furthermore, we manually searched the
Comparative Repository of CognitiveArchitectures (by theBICA society) for relevant
models.
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operate on a high-level of abstraction (they are usually not con-
cerned with neuron level phenomena), and are often functionally
more powerful than neural network models (they can often per-
form more complex tasks). They usually have less structural sim-
ilarity to brains, and are thus less constrained (even if validated
against behavior data, it is difficult to evaluate multiple symbolic
models performing a similar task with comparable goodness-of-
fit). In contrast, neural network models are often more similar
to the neurophysiological implementation (both in terms of rep-
resentation and mechanism) and are thus easier to constrain by
established neuroscientific knowledge and by additional types of
data (such as neural recordings or brain imaging). However, this
paradigm often makes it difficult to implement complex cognitive
processes, especially those requiring serial processing steps (for
example, none of the neural network models are able to perform
spatial reasoning or loop closure, in contrast to some symbolic ap-
proaches). Finally, cognitive architectures can follow either or both
of these paradigms, and have the additional advantage of incor-
porating multiple cognitive mechanisms—thus, they can perform,
and be evaluated against, different tasks and datasets.

Apart from categorizing the models based on their underly-
ing modeling paradigm, we will also group them into models
evaluated in simplified, simulated environments, and into models
which are capable of dealing with – and being evaluated in – real
world environments (such as robotic implementations). In general,
robotics emphasizes high-performance solutions to low-level ‘sen-
sor problems’ (e.g. dealing with sensory uncertainty/noise or pro-
cessing or recognizing complex sensory data), and aims for high
performance (accuracy, efficiency, etc.) instead of cognitive plausi-
bility (Jefferies & Yeap, 2008). However, as Gallistel (2008) points
out, the nature of the computational problems of navigation and
map making based on limited information does not depend on
whether one is studying biological or artificial systems. Thus, the
latter could help in understanding the former.

Robots and animals must perform similar computations when
trying to make sense of space. Computational models of cognition
operating in similar environments to themodeled biological agent,
and dealing with similar difficulties posed by the real world (such
as complexity, limited knowledge, uncertainty, or noise), can be
regarded as being more plausible than models not accounting
for such difficulties (Webb, 2000). This is the main motivation
for dedicating subsections to cognitive models evaluated in the
real-world (but excluding systems concerned with practical robot
performance rather than investigating cognition).

The following list presents an overview of the models reviewed
below. Models embodied on robots capable of running in the real
world are printed in bold, and, for clarity, the first mention of a
model in each subsection below is underlined. A comparative table
of all reviewed models, with additional properties for comparison,
can be found at the end of this section (Table 1).

• Symbolic models (Section 3.3)
– Allocentric models

∗ (Yeap, Wong, & Schmidt, 2008)
∗ (Jefferies, Baker, & Weng, 2008)
∗ perceptual wayfinding model (Raubal, 2001)

– Egocentric models
∗ NAVIGATOR (Gopal & Smith, 1990)

– Allocentric + egocentric
∗ HSSH (Beeson, Modayil, & Kuipers, 2010)
∗ (Franz, Stürzl, Hübner, & Mallot, 2008)
∗ DP-model (Brom, Vyhnánek, Lukavský, Waller, & Kadlec,

2012)
• Neural network-based models (Section 3.4)

– Allocentric models
∗ (Burgess, Jackson, Hartley, & O’Keefe, 2000)

· (later extended in simulation as the BVC model by Barry
et al., 2006)

∗ (Strösslin, Sheynikhovich, Chavarriaga, & Gerstner, 2005)
∗ (Barrera, Cáceres, Weitzenfeld, & Ramirez-Amaya, 2011)
∗ (Schölkopf & Mallot, 1995)
∗ (Voicu, 2003)
∗ (McNaughton et al., 1996)
∗ (Erdem & Hasselmo, 2012)

– Allocentric + egocentric
∗ (Byrne et al., 2007)

• Cognitive Architectures (Section 3.5)
– Allocentric models

∗ LIDA (Madl, Franklin, Chen, & Trappl, 2013)
– Egocentric models

∗ ACT-R/S (Harrison et al., 2003)
∗ CLARION (Sun & Zhang, 2004)

– Allocentric + egocentric
∗ Casimir (Schultheis & Barkowsky, 2011)

3.3. Symbolic spatial memory models

Symbolic models of spatial memory are concerned with explic-
itly representing spatial knowledge in a declarative form as facts
and rules. They are based on the assumption that cognition consists
of discrete mental states (representations), which can be modeled
as localist symbols (in contrast, in neural network-based models
the representations are not discrete, but constitute distributed and
potentially overlapping patterns of activation—see next section).
A number of processes operate on these representations, creating,
modifying, or deleting them (Smolensky, 1987). One of the earliest
definitions of such symbolic models has been put forth by Newell
and Simon (1976), coining the term of a ‘physical symbol system’,
a class of systems having symbols, being capable of manipulating
them, and being realizable within our physical universe.

Symbolic models are often based on cognitive science theories
(most frequently information processing models), and thus are
able to claim a degree of cognitive plausibility. There is usually
very little similarity between the elementary representations of
symbolic models and biological neurons (mainly because of the
choice of localist and amodal representations, in contrast to the
distributed andmoremodal representations of the brain; Barsalou,
2008; Martin & Chao, 2001). However, they can still correspond
to the brain on a higher level (e.g. functional correspondence
to brain areas, as established for ACT-R). Despite the structural
and paradigmatic difference, and for reasons mentioned in the
Introduction, brain areas corresponding to model parts will be
pointed out based on such functional correspondences where
applicable.

3.3.1. Models evaluated in real-world environments
A few cognitive models of spatial memory have been imple-

mented in robotic systems capable of navigating in the real world.
Jefferies and Yeap (2008) provides a survey of such cognitive map-
ping approaches that have been designed to work on robots. Usu-
ally, robotic implementations following the symbolic5 approach
build metric representations of the local environment using an ap-
proach called SLAM (Simultaneous Localization and Mapping). Re-
cent SLAM approaches are capable of recognizing a place the robot
has seen before (this is called ‘loop closing’), and correcting er-
rors in the map representation by exploiting and correcting for the
difference between expected and observed location on the map.

5 A notable exception is RatSLAM (Milford & Wyeth, 2010), a model based on
attractor neural networks (which however is not a cognitive model, and is not
intended to model behavior or biology).
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Fig. 2. Overview of symbolic models evaluated in real-world environments. A: (Jefferies et al., 2008; Yeap et al., 2008); bothmodels create local metric maps (absolute space
representations – ASRs – consisting of boundary elements); the latter model also builds a global metric map (Memory for Immediate Surroundings—MFIS) with which it can
perform loop closing. B: HSSH (Beeson et al., 2010). C: (Franz et al., 2008). Deterministic learning is a collective term for all mechanisms that learn by adding new symbolic
representations to memory upon perceiving a new object (as opposed to probabilistic or neural network learning mechanisms). Local maps represent spaces appearing to
enclose the agent (such as a room). Global maps can represent and align multiple local maps in the same reference frame.

SLAM is usually implemented by a probabilistic state estimation
method, integrating self-motion information and landmark obser-
vations in a statistically optimal fashion (Jefferies & Yeap, 2008;
Thrun & Leonard, 2008).

The core ideas of SLAM – using probabilistic inference to deal
with uncertainty and noise and to infer near-optimal estimates of
the locations of the agent, and objects in its environment – do not
contradict the cognitive sciences. They fit in well with the recent
‘Bayesian brain’ hypothesis (Knill & Pouget, 2004); the idea that
the brain integrates information in a statistically optimal fashion.
There is evidence that spatial cues might be integrated statistically
optimally in humans (Nardini, Jones, Bedford, & Braddick, 2008)
and animals (Cheng, Shettleworth, Huttenlocher, & Rieser, 2007)
on the behavioral level. Computational models resembling SLAM
– using probabilistic state estimation – have been proposed to
explain spatial orientation and cognitive mapping (Cheung, Ball,
Milford, Wyeth, & Wiles, 2012; Fox & Prescott, 2010). It has also
been suggested that hippocampal place cells might be able to
perform approximate Bayesian inference on the neuronal level,
based on electrophysiological recording evidence (Madl et al.,
2014).

However, the representation implementation is highly impor-
tant for judging the plausibility of such probabilisticmodels (e.g. in
terms of their structural accuracy, and levels of abstraction and
modeling). In SLAM approaches in robotics, maps are stored in dif-
ferent ways, most commonly as covariance matrices, or as occu-
pancy grids (two-dimensional matrices with entries storing the
probability of occupancy), or tree-based representations (Thrun &
Leonard, 2008). In the absence of psychological or neuroscientific
data substantiating the existence of explicit covariance represen-
tations in human or animal cognition, and of biologically realistic
implementations, it would be difficult to argue for the plausibil-
ity of covariance matrices as cognitive models of spatial memory.
Here we only include models where authors explicitly address the
relationship of their models to cognitive science or neurobiology
(unfortunately, although citing empirical evidence, few of these
authors evaluate their models against empirical data from hu-
mans or animals). For reviews of robotic SLAM, see e.g. Bailey
and Durrant-Whyte (2006), Durrant-Whyte and Bailey (2006) and
Thrun and Leonard (2008).

Building on work by Yeap (1988) – one of the first symbolic
computational models of cognitive maps – a number of robotic
systems have been built (many of which have departed from the
original claim of being computational theories of cognitive maps
and will therefore be omitted). Yeap suggests the computation
of abstract allocentric maps of a region (from the shape and
disposition of surfaces/boundaries relative to the agent) which the
author calls ‘absolute space representation’ or ASR (see Fig. 2(A)).
Multiple ASRs can be interconnected as a traversable network to
form a cognitive map of the entire environment, and afford the
notion of ‘places’; a network of ASRs can model a network of
places, with exits leading from one to the other, such as rooms in a
building. The elemental representation in ASRs is a list of triplets,
each representing a boundary element (BE), and containing its size,
angle to the next adjacent BE, and whether it is empty space, not
empty, or occluded.

• Based on this model, Yeap et al. (2008) developed a robotic
system capable of building allocentric maps. The robot uses a
simple exploration strategy (move forward in a straight line, stop
when encountering an obstacle, turn away from the obstacle but
maintain forward direction), after which it has to find its way
‘home’ (back to its starting location).

It used 8 simple sonar sensors tomeasure distances to obstacles
and boundaries, and built a metric map based on both the robot
path, and linear surfaces around it approximated from sonar data.
This map was subsequently split, or merged, into distinct regions
(e.g. corridors and rooms) using features such as average width
(e.g. corridors are long and narrow), and employing the split and
merge algorithm (Pavlidis & Horowitz, 1974) to find continuous
regions. Each continuous motion segment of the robot (without
stopping or turning) was represented as an ASR (consisting of
multiple boundary elements from sonar data). The robot was able
to use the final network of ASRs it has built using the split and
merge algorithm to find its way back ‘home’ by backtracking the
distances traveled.

The robot could localize itself using ‘confidence maps’ com-
puted from the similarity between the currently perceived region
or ASR (current sonar readings), and all stored ASRs. The authors
reported that the localization was accurate with respect to the oc-
cupied region (i.e. the error was smaller than the size the regions).
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The robot could also robustly estimate a homing vector and return
to its starting position even when the ASRs computed during the
outward and inward journeywere inconsistent—not requiring cor-
rect and consistent metric representations for homing is the main
strength of the model. However, it could not match re-observed
boundaries with those in its memory, and thus it is unable to ‘close
the loop’.

Themodel does notmake any claims of structural accuracywith
regard to its neurobiological equivalent. Based on functional sim-
ilarity, ASR regions contain some of the information represented
by place cells (‘confidence maps’ on ASR regions, similarly to place
cells, carry information regarding the currently occupied space),
goal cells (ASRs regions, like goal cells, can constitute goal repre-
sentations) and by boundary vector cells (boundary elements carry
boundary size and angle information).

• Also drawing on the ideas of Jefferies et al. (2008) and Yeap
(1988) proposed that a cognitivemapmight consist of a topological
global map containing metric local space representations, aiming
to benefit from the advantages of both—simple localization and
metric consistency of the local maps, and easier ‘loop closing’ with
the help of global maps (as well as the confinement of location
errors to the local maps). The idea of separate local and global
representations is consistentwithmost empirical cognitive science
research (Hirtle & Jonides, 1985; Poucet, 1993; although there
is some debate regarding whether and which mechanisms/areas
are metric or topological). In contrast to the previously described
model, the robot by Jefferies et al. (2008) used laser rangefinders as
sensors (which provide more accuracy and resolution than simple
sonar sensors).

Their approach turns the raw laser data (distance measure-
ments) into lines representing boundaries, finds the exits (gaps in
the boundary), and then computes ASRs based on this information.
Different ASRs representing local regions can subsequently be con-
nected topologically via the identified exits to form a global map.

Finally, with the help of this topological map, they also build
a global map of limited extent containing the last few local
spaces visited (called ‘Memory for the Immediate Surroundings’,
MFIS), providing easier recognition that the robot has re-entered
a previously observed part of the environment (loop closing). This
model is one of only two reviewed models capable of building a
globalmap andof loop closing (the other being Beeson et al., 2010—
see below).

The authors argue for the psychological plausibility of their
model using the empirical evidence for local and global spatial
maps (Poucet, 1993) and multiple reference frames for different
parts of an environment (Derdikman & Moser, 2010; McNaughton
et al., 2006).

Themodel does not aim for structural resemblance to the brain.
As it is also based onYeap (1988), tentative arguments of functional
similarity can be made between ASR regions and place cells, and
boundary elements and boundary vector cells. No equivalent of
a consistent, metric, global map has been found in the brain (the
sameplace cells participate in representing very different locations
in different environments; there is no one-to-one mapping as in
the MFIS).

• Beeson et al. (2010) also propose a spatial memory model
combining the strengths of topological and metrical approaches,
calling it HSSH (Hybrid Spatial Semantic Hierarchy), an extension
of the SSH model proposed by Kuipers (2000). The HSSH has
four major levels of representation: a local metrical level (in
which the agent builds a metric Local Perceptual Map—LPM),
a local topological level (in which the agent identifies discrete
places in a large-scale environment and describes paths in it), a
global topological level (for resolving structural ambiguities and
determining how the environment is best described as a graph of
places, paths and regions), and a global metrical level (describing

the environment in a single metric global map using the same
reference frame).

On the first level, the LPM is built using probabilistic SLAM
(Thrun & Leonard, 2008) based on laser rangefinders, and rep-
resented as an occupancy grid (a discretized grid in which each
cell contains the probability of being occupied by an obstacle). On
the local topological level, a discrete set of ‘places’ and ‘path seg-
ments’ connecting themare identified (using an approach based on
Voronoi graphs and recognized gateways/doors). The global topo-
logical map is built by creating a tree of all possible topological
maps (map hypotheses) consistent with current experience. After
each travel action, every map hypothesis is extended; if it leads to
a predicted transition to a known state, the hypothesis can be up-
dated or refuted based on the subsequent observation. This allows
‘closing the loop’ and pruning the tree of topological maps when
places are revisited.

Finally, on the global metrical level, a metric map of the entire
environment in a global reference frame can be assembled on the
structural skeleton provided by the global topological map (and
based on the known robot trajectory and the displacements be-
tween places to appropriately translate local frames of reference).
HSSH is the only model except for Jefferies et al. (2008) capable of
building a global map and closing the loop.

Although not aiming for structural similarity to the brain, the
HSSH and its predecessors claim to be ‘theories of robot and human
commonsense knowledge of large-scale space: the cognitive map’
(Kuipers, 2008). Unfortunately, no comparisons of themodel’s per-
formancewith human data have been performed. In terms of func-
tional similarity, the occupancy grid employed as the low-level
metric representation bears some resemblance to hippocampal
place cells, as both can be used to infer the most likely location of
the agent, as well as the most likely locations of boundaries (Barry
et al., 2006). However, there are also significant differences, includ-
ing the resolution (1 cm in some SLAM approaches, as opposed to
the sizes of place cell firing fields,6 which range from 20 cm or less
tomultiplemeters, Kjelstrup et al., 2008; O’Keefe & Burgess, 1996),
constancy (place fields can be destroyed or changed by adding bar-
riers or making other changes in the environment), shape proper-
ties (occupancy grid cells are square, place cells can have multiple
firing fields of different round shapes), representation (occupancy
grid cells contain probabilities, place cell firing rates almost cer-
tainly do not, since they strongly depend on factors such as run-
ning speed), among others (Moser et al., 2008). Independently of
the differences in the representation employed, probabilistic infer-
ence (the mechanism which SLAM is based on) has been argued to
be plausible based on empirical data (see above).

• Franz et al. (2008) have developed a robotic system on
a Khepera miniature robot that accounts for egocentric route
navigation, as well as allocentric topological navigation and global
metric navigation (with the first two working on the robot and the
latter implemented in a simulation), building on their earlier work
(Franz & Mallot, 2000).

Route navigation (or taxon navigation) works by storing simple
associations of actions to egocentric spatial relations. Several such
associations can be concatenated to routes that might lead from
the current location to a goal location (see Section 2). Franz et al.
(2008) use a panoramic stereo camera to calculate the disparities
of N = 72 image sectors, after identifying each sector in both
images (disparities are defined as how much an image sector

6 Despite these sizes of individual place fields, it is possible to decode the animal’s
positionmore accurately using the cumulative activity ofmultiple overlapping cells
and statistical methods (up to an error of about 8 cm based on the spike train alone,
Brown, Frank, Tang, Quirk, & Wilson, 1998, or about 3 cm based on theta phase
coding, Jensen & Lisman, 2000).



T. Madl et al. / Neural Networks 65 (2015) 18–43 27

appears shifted in the second image relative to the first; from
these disparities, distances can be computed using elementary
trigonometry). They represent a place using a ‘disparity signature’,
a list of disparities and their corresponding reliabilities. Storing
such place representations allows a simple homing by using a
strategy of calculating the disparity signatures for several possible
movements, and then choosing the movement that minimizes the
difference between the current and the goal disparity signature.
Sequences of distinguishable disparity signatures can constitute a
route and allow taxon navigation.

Topological navigation integrates routes leading through the
same place to a representation that can be used for navigating to
multiple goals. In this model, topological navigation is afforded
by a ‘view graph’, which is built by measuring similarities
between views (using maximal pixel-wise cross-correlation), and
connecting two routes whenever two views are sufficiently similar
and whenever the robot succeeds in homing to this similar
view. This system could successfully explore an environment, and
perform homing and shortcut planning in the real world. However,
it requires views to be unique (since it connect routes when views
match)—thus, it cannot close the loop in environments with non-
unique views.

The model was also extended by an approach to survey naviga-
tion in a simulation. This requires a representation in a common
frame of reference. The model attempts to construct a global met-
ricmapbymetrically embedding the viewgraphusing an approach
based on multi-dimensional scaling (MDS).

Franz et al. (2008) argue that their navigation strategies
are ‘biomimetic’; citing behavioral evidence from studies with
insects, which lend strong support to the claim that insects seem
to use mainly view-based homing for navigation (Graham &
Collett, 2002)—a strategy resembling the ‘disparity minimization’
approach of the authors. However, they do not claim any structural
similarity to brains, whether mammalian or insectile. The taxon
navigation strategy can be implemented in principle by the
basal ganglia storing routes as stimulus–reaction mappings, in
combination with neurons encoding views, such as spatial-view
cells or PPA neurons (see Section 2). However, even on the
functional level, this similarity is highly tentative, since mammals
can robustly navigate to goals even in dynamic environments, or
after changes in the environment (which would interfere with the
simple correlation-based similarity measure of this model), and
also because it is highly unlikely that mammals recognize views
based purely on disparities (for example, scene recognition works
almost as well on computer screens as in real scenes, suggesting
that stereo vision does not play a major role).

3.3.2. Models evaluated in simulations
Computational experiments in simulations have to deal with

fewer issues such as complexity, sensory inaccuracy, or noise.
Thus, their developers often have the resources to endow them
with a larger range of abilities and to account for more tasks
and paradigms (at the expense of less similarity to the actual
environment of the modeled biological cognition).

• One of the first symbolic models of spatial memory in urban
environments, growing out of the symbolic AI paradigm of the
last century, was the NAVIGATOR model by Gopal, Klatzky, and
Smith (1989), implemented in LISP. It runs in a simple environment
consisting of horizontal and vertical streets, as well as ‘plots’—
locations and associated sets of objects (such as houses)—and
associated decision points—points at which navigational decisions
can be made. The environment is represented in a predicate
calculus-based language. The agent (called NS, navigating system)
can perceive information from the plot associatedwith its location,
as well as other plots visible in each feasible direction of view; and

can either turn in the four modeled directions (to perceive in that
direction) or move in one of those directions.

Upon receiving an input, the NS selects themost salient objects,
and stores them in a workingmemory (WM).WMhas the function
of processing perceived information, transferring it to long-term
memory (LTM), monitoring instructions, and planning paths to a
goal through pattern matching. LTM in turn permanently stores
conceptual, spatial, and goal knowledge; in the form of semantic
network representations (e.g. decision-point 2 associated-with
house, house color-of red) which can decay (‘forgetting’). These
representations are connected by ‘links’ which represent spatial
relations, and can be learned either from perceptual input (when
two locations are present inWMat the same time), or from explicit
instructions connecting two locations (e.g. ‘go from A to B’).

Based on its semantic network representation, NAVIGATOR is
able to find goal locations and plan novel paths. The agent runs
in a very simple (simulated, discrete and static) environment.
The model is claimed to qualitatively replicate several aspects of
human spatial behavior, such as way-finding errors (three types
of errors made by NAVIGATOR appear similar to humans—errors
made at locations with more information, at locations requiring
complex navigational actions, and errors due to misidentification
of the goal) (Gopal & Smith, 1990). No quantitative comparison
against human data is performed.

The NAVIGATORmodel is based on information processing the-
ories of cognitive psychology and thus can claim a degree of cog-
nitive plausibility. No structural similarity to neural architecture
is claimed. The spatial parts of the semantic networks constitut-
ing the representations in NAVIGATOR bear some resemblance to
hippocampal representations (plots and decision points to place
cells), but are too simplistic for an actual functional correspon-
dence (e.g. not every point of the environment is represented, and
the distance metric is city-block, not Euclidean).

•Raubal (2001) describe the perceptual wayfindingmodel, a cog-
nitively based computational model for wayfinding which, unlike
NAVIGATOR, considers the information needs of navigators at each
decision point. The model is based on the ‘Sense-Plan-Act’ frame-
work, as well as affordance theory (affordances are possibilities for
action)—the idea that animals perceive the environment in terms of
what they can do with it and in it (Gibson, 1986). It is a goal-based
agent—given a current state description, goal information, and the
results of possible actions, it chooses actions to achieve a goal.

Its main components are its observation schema (containing
spatial and temporal location, goal, and measuring limitations,
in fixed frame-like structures), a wayfinding strategy (decision
rules for wayfinding), and ‘commonsense knowledge’ (including
procedural knowledge—how to move in a direction, what to do
upon reading specific symbols such as arrows on signs). The
implemented agent runs in a very simple simulated environment
which is static and discrete, having a limited number of possible
percepts and actions at each point. The agent can observe the
entire environment at any given time (unlike NAVIGATOR, which
also used static and discrete environments but accounted for
partial observability). The environment is represented as a graph
of decision points, where each node has a position and a state, and
each edge represents a transition between positions and states.
Since the evaluation scenario is set in an airport, each position has
information regarding how to reach goals (signs containing arrows
to gates). The agent first perceives the environment (senses), then
decides which action leads it toward its goal (a trivial decision
given the signs at each node), and then carries out the action (acts).

The perceptual wayfinding model is evaluated in an airport
wayfinding task (successfully finding gates), but not compared
against any human or animal data. Because of the amount of
information pre-programmed into the implemented agent, and
because of the fully observable static environment, the agent needs
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Fig. 3. Overview of symbolic models evaluated in simulated environments.

and has no learningmechanism. There is little functional similarity
of the components of this model to the brain.

• Due to more recent improvements in computer graphics, it
has become possible to simulate virtual agents in more complex,
three-dimensional environments. In a recent model, Brom et al.
(2012) have proposed a computational model of both egocentric
and allocentric spatial memory for intelligent virtual agents (IVAs),
calling their spatial model the DP-model since it was evaluated in
a disorientation paradigm (see below). IVAs can be considered to
be embodied, although in a much simpler and more predictable
environment than the real world.

The information flow in the DP-model is as follows: sensory
systems assemble information in the ‘perception field’, based on
which egocentric representations (spatial vectors to objects in the
agent’s own reference frame) are built in the ‘egocentric subsys-
tem’, which has both an STM and LTM component. Egocentric
representations can consolidate into the LTM component of the
egocentric subsystem, as well as allocentric representations in the
long-term ‘allocentric subsystem’. Both egocentric and allocentric
representations are weighted, and weights serve as a represen-
tation of accuracy—how well a representation was learned (they
are required to model errors, since the vectors are represented
precisely, without modeling sensory inaccuracies or noise). The
agent’s perception field contains all objects in the agent’s visual
field (which is 120 wide). Eye movements, foveation, attention,
and visual recognition are not modeled; objects are represented
as state-less and static symbols. The egocentric component con-
tains the agent’s current heading (with respect to the south–north
axis), a set ofweighted egocentric vectors from the agent to objects,
and the egocentric updating configuration (containing the rates of
increasing or decreasing the weights of egocentric vectors). The
allocentric component contains a set of weighted allocentric vec-
tors between all objects, and an allocentric updating configuration
(specifying the speed of increasing weights of the allocentric vec-
tors). Egocentric vector weights are increased at every time step
if the associated object is still part of the perceptual field, and de-
creased if it is not. The vectors themselves are updated whenever
the agent moves to point correctly from the agent’s position to the
associated object. Allocentric vectors are learned from egocentric
vectors.

The agent is also endowedwith an action selectionmechanism,
enabling it to follow a specified trajectory to learn a representation
of space during the learning phase, as well as to perform pointing
tasks. In these tasks, the agent first observes and learns a number of
object locations, and subsequently has to point to these locations
after the objects have been removed. The pointing error in this task
is a function of the vector weights (themselves depending on how

often and how long the associated object has been seen during
the learning phase). An advantage of this model compared to the
previous twomodels is that it runs in amore complex (continuous,
dynamic, three-dimensional) simulated environment.

Brom et al. (2012) successfully replicate human data from two
pointing paradigm experiments previously performed using their
model, experiment 7 of Holmes and Sholl (2005), in which subjects
learned the locations of objects in a room and then had to point
to the remembered locations of the objects with their eyes closed
after a 45 rotation left or right (both in an oriented and in a
disoriented condition induced by slow rotation on a swiveling
chair), and experiment 1 of Waller and Hodgson (2006), a similar
pointing paradigm.

This model builds on theories from cognitive psychology
and produces error patterns consistent with humans in point-
ing paradigms, but does not claim structural similarity to brains.
Some tentative functional correspondence between egocentric
vectors and representations in the parietal reach region (and other
correlates of egocentric spatial memory) might be identified, since
they encode the positions of targets in an egocentric reference
frame.

3.4. Neural network-based spatial memory models

Unlike symbolic systems, neural network models usually em-
ploy non-local and distributed representations (also called sub-
symbolic representations), within interconnected networks of
simple units. NNs are simplified models of the brain composed of
a number of units (analogs of neurons) with weighted connections
between them. Mental states are represented as numeric activa-
tion values of the units (or subsets of the units), and learning is
usually implemented by modifying connection strengths between
the units (Thomas & McClelland, 2008).

There is a variety of flavors and implementations of neural net-
works, ranging from the simplest perceptrons (which sum up a
number of inputs multiplied by incoming weights and threshold
the result to yield a binary output) over the commonly used feed-
forward artificial neural networks, networks of perceptrons with-
out cycles such as feed-forward ANNs and self-organizing maps,7

7 A self-organizing map (SOM) is a typically two-dimensional neural network
learning a discretized representation (‘map’) of its N-dimensional inputs. Unlike
other ANNs, they preserve the topology of the input space. Each unit stores an N-
dimensional weight vector. During a set number of training iterations, for each
input, the nodes with weight vectors closest to the input (smallest Euclidean
distance) are ‘pulled closer ’ to the input (weight vectors are updated to be more
similar to the input)—see Kohonen (1990), or Willshaw and Von Der Malsburg
(1976) for a similar, more biologically plausible model.
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and recurrent neural networks allowing feed-back connections
and cycles (such as attractor networks8), over neural networks
aiming tomake only biologically plausible assumptions (BNNs, ‘bi-
ological NNs’), to spiking neural networks (SNNs, which are the
most biologically realistic, and are the most computationally ex-
pensive to run; Jain, Mao, & Mohiuddin, 1996).

Of these, only the latter two (BNNs and SNNs) explicitly aim
to be biologically realistic, with this claim being extensively ver-
ified only for SNNs (they are able to account for electrophysiologi-
cal recording data from biological brains). In addition to modeling
neuronal and synaptic state, they also model temporal dynamics,
and use short and sudden increases in voltage (‘spikes’) to trans-
mit information (Ghosh-Dastidar & Adeli, 2009). BNNs, although
not directlymodeling electrophysiology, also aim to be biologically
realistic in terms of brain connectivity and their learning mecha-
nisms. We shall collectively refer to all other types of neural net-
works (the ones not aiming to closely model biological neurons)
as artificial neural networks (ANNs). ANNs, unlike BNNs and SNNs,
are usually driven by mathematical reasoning instead of biological
accuracy.

Because of the biological inspiration and the clear analogy
between units of neural networks and neurons in brains, neural
networks have been claimed to be more biologically plausible
than symbolic models. This is verifiably true for many SNNs (spike
trains, firing rates, membrane potentials etc. can be compared
with biological neurons). For ANNs, the claim of biological
realism can be cast in doubt, since they make undefended design
decisions (e.g. elements not having clear biological counterparts
such as fixed biases, nonmonotonic activation functions, or the
commonly used back-propagation learning algorithms) (Dawson
& Shamanski, 1994).

Still, even if their degree of realism is debatable, ANNs are struc-
turally more similar to brains than symbolic cognitive models—
the representations employed by both are mostly distributed,
grounded and modal Barsalou (2008). Furthermore, on a higher
level, neural network-basedmodels incorporate properties charac-
teristic of biological cognition, such as content-addressable mem-
ory, context-sensitive processing, and graceful degradation under
damageor noise Thomas andMcClelland (2008). Finally, suchmod-
els can accommodate the anatomical connections and functional
distinctions known from neuroscience in a more straightforward
fashion than symbolic models. Fig. 1 depicts anatomical connec-
tions between the spatially relevant regions described in Section 2,
and shows some example recorded firing fields of cells with spa-
tially localized firing.Most neural networkmodels reviewed below
attempt to be consistent with at least a subset of these results. For
example, all of them model place cells, except for the SOM model
by Voicu (2003). The model by Byrne et al. (2007) accounts for all
of these cell types (with a simplified anatomy).

3.4.1. Models evaluated in real-world environments
• A large number of biological ANN-based models have been

proposed based on the hippocampus and other neuroanatomical
bases of spatial memory. Burgess et al. (2000) proposed one such
model that was implemented on a Khepera robot, based on the
influential idea that place cell firing is driven by inputs with

8 A recurrently connected network of units whose time dynamics settle to a
stable pattern (e.g. a stationary point or a time-varying pattern; Eliasmith, 2007). A
type useful for spatial representations is called continuous attractor neural network
(CANN), which is able to represent a point in space by means of an activity packet
in the network centered on a specific spatial location. The activity packet stays
stationary with no inputs, but if a unit near it receives activation it moves toward
that unit—see e.g. the path integration model of Samsonovich and McNaughton
(1997).

Fig. 4. Two navigation strategies. A: Allocentric navigation using a gradient ascent
strategy on a heavily interconnected network of place representations, as used by
the biological ANNmodel by Burgess et al. (2000), the ANNmodel by Schölkopf and
Mallot (1995), as well as the LIDA hybrid cognitive architecture (on a hierarchical
network). B: Egocentric navigation by always executing the action associated with
the highest reward r at each state S, learned by reinforcement learning (used in the
neural network models by Barrera et al., 2011, and Strösslin et al., 2005, as well as
in the CLARION cognitive architecture).

Gaussian responses tuned to the presence of walls at particular
distances (O’Keefe & Burgess, 1996) (later expanded and called
Boundary Vector Cell model Barry et al., 2006, which successfully
accounted for rat neural and human behavior data, but was not
implemented in a real-world robot). The model is mainly designed
to account for the place specificity of hippocampal cells and their
contribution to behavior.

It consists of a population of ‘sensory cells’, projecting to ‘en-
torhinal cells’, which map to ‘place cells’ via competitive learn-
ing, which in turn map to ‘goal cells’ by one-shot Hebbian
learning. ‘Goal cells’ also receive inputs from a reward signal and
from four ‘head-direction cells’ (north, south, east, west). Sensory
cells are a rectangular array of cells, each representing a different
possible distance and allocentric direction to a wall, just like BVCs
(Barry et al., 2006) (however, unlike BVCs, only the four orthogo-
nal compass directions are represented). Each entorhinal cell re-
ceives hard-wired connections from two sensory cells related to
two orthogonal walls. Entorhinal cells are connected to place cells,
with the connection weights being adjusted by competitive learn-
ing in order to increase the spatial specificity of place cells. Finally,
connections between place cells and goal cells are learned by one-
shot Hebbian learning—when the agent encounters a locationwith
a reward, a goal cell is excited, and the connection between it and
the corresponding place cells increased. When the rat moves away
from the reward location, the activity of these place cells will de-
crease; thus, the activation of goal cells will encode the proximity
to the reward, allowing a gradient ascent based navigation strat-
egy.

The robot running the model is able to navigate to local goals. It
is running in a single small environment without objects, and can-
not plan novel paths. However, the modeled place cell firing fields
resemble empirically observed firing fields (including changes in
their amplitude and shape when the environment is changed in
size or shape—these firing field changes are reported to be consis-
tent with experimental data).

The model is largely based on the neural basis of allocentric
spatial memory. Although the goal learning model is speculative,
both the anatomical connections and arising firing fields of the
‘place cells’ in the model are plausible, and qualitatively resemble
empirically recorded firing fields. Later extensions of the model –
which however have not been implemented on a real-world sys-
tem – include comparison to empirical data, electrophysiological
data recorded from rats as well as human behavior data (Barry
et al., 2006) (the model could successfully account for the effect
of changed environment size on both the firing fields of rat place
cells and on object locations remembered by humans).

• Another biological ANN model that is also capable of control-
ling a real-world Khepera robot was proposed by Strösslin et al.
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Fig. 5. Overview of neural network models evaluated in real-world environments.

(2005), building on earliermodelingwork (Arleo&Gerstner, 2000).
Unlike (Burgess et al., 2000), this model includes full visual pro-
cessing, not just distance measurements to boundaries. The model
consists of multiple interconnected populations of neurons (sub-
networks).

The ‘local view’ (LV) processes and stores visual stimuli,
and contains rotation cells and step cells. The ‘head direction
system’ (HD), corresponding to the postsubiculum, contains head-
direction cells (driven by rotation cells in LV). The ‘allothetic place
cells’ (APC) represent the agent’s position in the environment
(driven by step cells in LV). The ‘position integrator’ (PI) is a path
integration system (driven by step cells in LV). Both the APC and
PI project to the ‘combined place code’ (CPC), corresponding to
the hippocampus and subiculum. Finally, ‘action cells’ in nucleus
accumbens perform navigation learning based on place cells in
CPC. The model uses V1-inspired ensembles of units with Gabor
wavelet-like receptive fields (filters) to represent visual input in
LV. Rotation cells (RCs) in LV discriminate headings regardless
of position, based on average relative distance between stored
and current filter activity; whereas step cells (RCs) discriminate
positions – regardless of headings – based on perceived angular
differences between landmarks (firing rates of SCs depend on the
most similar column difference of the associated filters, similarly
to the ‘disparities’ in the model by Franz et al. (2008) described
above). The HD system updates head directions based on both
idiothetic cues (dead reckoning) and allothetic cues (from the
rotation cells). APC place cells are driven by multiple step cells
(connections are set by one-shot Hebbian learning), and thus their
firing is based on the current view. APC place cells help calibrate
PI cells using allothetic information to correct accumulating errors
Etienne et al. (1996). Finally, information from APC (allothetic) and
PI (idiothetic) converge in the CPC place cells.

Connections between APC and CPC are modified using Hebbian
learning. Goal-driven actions are learned in AC using Q-learning,
a variant of reinforcement learning (the ACs would correspond
to neurons in the nucleus accumbens). Each action cell encodes a
motor command, determining the allocentric direction of the next
movement.

The model is capable of learning a map in the form of a
consistent place cell code, and is able to solve navigation tasks and
learning tasks such as the Morris water-maze task.9 It cannot plan
novel routes.

9 In the Morris water-maze task, rats are placed into a pool of water in which
they have to swim. The pool contains a hidden platform. The rats search for and

Although not using spiking dynamics, the model incorporates
insights from the neuroscience of spatial cognition known at
the time of its development, and, unlike many ANNs, does not
include neuroscientifically questionable design decisions. Further-
more, it is consistent with the neuroanatomy of the hippocampal–
entorhinal complex. Thus, it can claim a high amount of neural
plausibility. In addition to the neurally plausible models reviewed
in the next section, it also functions in the real world, with realistic
input. However, it is not evaluated against neural or behavior data.

• Barrera et al. (2011) proposed another biological ANN model
based on brain neurophysiology, which they evaluated against rat
behavior data, unlike the previously reviewed models (extending
their earlier work Barrera & Weitzenfeld, 2008). Similarly to the
model by Strösslin et al. (2005) above, they use modeled ‘place
cells’ to represent spatial locations, and use reinforcement learning
to learn appropriate reward-oriented actions at spatial locations.
Their model receives four kinds of sensory inputs: incentives
(providing the motivation/reinforcement signal), kinesthetic self-
motion information, visual landmark information (driving the
place cell representation), and affordances information (providing
possible actions to the action selection module).

These kinds of input are processed by four corresponding mod-
ules, a ‘motivation’ module (calculating a reward signal from the
incentives), a ‘path integration’ module (updating position based
on self-motion), a ‘landmarks processing’ module (representing
the current view of the animal, based on all perceived landmarks;
suggested to correspond to the EC), and an ‘affordance processing’
module (encoding possible turns the rat can perform at a given lo-
cation and orientation). The reward signal from ‘motivation’ drives
the ‘learning’ module (learning by reinforcement; corresponding
to the VTA, NA and striatum in brains), and the outputs of the path
integration and landmarks processing modules drive the ‘place
representation module’, which in turn project to the ‘action se-
lection’ module. The ‘place representation’ module includes ‘place
cells’ (PCs, the activity of which arises from aweighted linear com-
bination of the path integration and landmark inputs; correspond-
ing to the hippocampus) as well as a ‘world graph layer’ (WGL,
suggested to correspond to the prelimbic cortex). The WGL learns
a topological map by learning associations between overlapping

eventually find the platform, and remember its location in their spatial memory.
Subsequently, they immediately head for the remembered location of the platform
when placed into the pool.
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place fields, as well as learning actor units representing actions
with high expected rewards associated with place cells (actor unit
weights are learned by reinforcement learning). TheWGL also per-
forms place recognition, by classifying the currently active PCs.

Finally, the action selection module computes a motor output
(the next moving displacement and direction), given the current
possible affordances, current location (place cells), and the
expectations of maximum reward from the actor units in WGL.
The model is able to learn metric (PCs) as well as topological maps
(WGL) in the place representation layer, and is able to navigate to
reward locations.

The authors evaluated their model against rat behavior data
in a simple maze navigation paradigm, in which water-deprived
rats were looking for a water dispenser, learning its location
during a number of training sessions. They used AIBO robots in
the same paradigm, in similar mazes. The robots could learn near-
accurate metric and topological maps of the mazes, and exhibited
learning curves (during learning the reward location) and numbers
of incorrect trials and optimal trials (during test trials) similar to
those of the rats.

The model is based on rat neurophysiology, and thus is neu-
ronally plausible. It is also able to function in the realworld, andhas
also been evaluated against rat behavior data (the learning curves
in a simple maze were comparable), lending credence to the au-
thors’ claim that their model can be used by experimentalists to
predict rodents’ spatial behavior, and test neuroscientific hypothe-
ses. Additionally, although not replicating neural data, the authors
present results verifying the engagement of the proposed neural
correlates of their models (reporting gene expression data) in the
rats they used in their experiments (Barrera et al., 2011).

A further neural network basedmodel ofmapping very success-
ful in robotics which was also inspired by rat neurophysiology is
RatSLAM (Milford & Wyeth, 2010). It will not be reviewed here,
since RatSLAM is not a cognitive model, and is not compared to or
intended to model either behavior or biology (the authors aim for
practical robot performance instead of plausibility).

3.4.2. Models evaluated in simulations
• Schölkopf and Mallot (1995) proposed a neural network

model of cognitive map learning in a maze, a model aiming
for cognitive rather than biological plausibility (but nevertheless
pointing out similarities to neural substrate). Their agent em-
ploys a central perception–action cycle (Fuster, 2002) (similarly
to the sense–plan–act cycle of the symbolic perceptual wayfind-
ing model; Raubal, 2001). The model assumes it is dealing with a
maze environment consisting of at least two places, with corridors
connecting the places; and also assumes a direct correspondence
between these corridors and ‘views’ (a view is thought of as being
attached to the wall opposite to the entry of the respective corri-
dor); and that views are uniquely distinguishable.

The model is based on the idea of a ‘place graph’ (an allocentric
graph of places, connected by corridors) and a ‘view graph’ (a
graph of local views connected by edges with labels representing
egocentric movements; and connected only if they can be
experienced in immediate temporal sequence). The view graph is
learned using a SOM-type (self-organizing sequence map) neural
network (Kohonen, 1990), which has three layers: an input layer
(with units representing views), a movement layer (representing
the movements left, right or back; with only one of these three
units active at each time), and a ‘map layer’. Themap layer receives
sequences as inputs, from both themovement layer (a sequence of
movements), and the view layer (a sequence of views represented
by the activity of the view layer units). A map of the current maze
is learned by ‘random exploration’, i.e. a large number of random
movements and views are passed to the network, which uses
learning by self-organization (Kohonen, 1990) to assign map units

in a way that they closely resemble the view graph (i.e. near views
are represented by near units, and distant views by distant units).
After learning, path planning to arbitrary views can be performed
by a gradient ascent strategy (spreading activation from the goal,
and then at each map unit, progressing to the adjacent map unit
with the highest activation), a planning strategy that the authors
implemented algorithmically (not in a neural network).

Unlike the previously reviewed neural network models, this
model is able to plan novel routes algorithmically. It is also one of
only three neural networkmodels implementing topological maps
(the other two being Barrera et al., 2011 and Erdem & Hasselmo,
2012).

Since there is little direct correspondence between this model
andneuroanatomy, and since planning is implemented algorithmi-
cally, this model cannot be called biologically plausible. However,
it is argued by the authors to functionally resemble some aspects
of biological spatial memory (such as free/passive exploration and
expectations of future views).

• A model also based on self-organized learning was proposed
by Voicu (2003), extending their earlier work (Voicu & Schmajuk,
2000). Unlike the model above, it is capable of running in a full
two-dimensional metric simulation instead of a restricted maze-
like environment. A further difference is that it learns hierarchical
instead of flat spatial representations—which is frequently argued
to be the structure of cognitive maps (see Derdikman & Moser,
2010, Hirtle & Jonides, 1985 and McNamara, 1986, for behavioral
and Derdikman & Moser, 2010, for neural evidence).

The model architecture consists of a hierarchical allocentric
cognitive map and four additional modules (a localization sys-
tem providing landmark representations, a working memory for
planning paths, a motor system translating them into actions
and a control system supervising information flow between these
modules). The cognitive map itself uses types of SOM (recurrently
connected hetero-associative networks; Kohonen, 1990) to build
associations. There are three different networks representing as-
sociations between all landmarks, associations between landmarks
having the largest number of associations at the first level, and as-
sociations between landmarks having the largest number of asso-
ciations at the second level, respectively. Themap is learned in two
stages: an exploration stage for building the first level at the high-
est resolution (moving randomly at the beginning, avoiding previ-
ous places, and then, over ten acquired landmarks, moving toward
those having the fewest associations), and a second stage, building
the hierarchical cognitive map (selecting the landmarks with the
largest number of associations and associating them). Weights are
adjusted depending on distance (lower distances yielding lower
weights), so that activation gradients can serve to plan a path to-
ward a goal.

The model can learn hierarchical metric maps, and can plan
novel paths. It succeeded in reproducing the empirically observed
hierarchical cognitive maps by Hirtle and Jonides (1985), and also
produced similar distance judgment errors as humans (distances
spanning multiple clusters or submaps are overestimated both by
humans and by the model).

This model uses SOMs, types of ANNs, and does not aim to
be neurobiologically plausible. The spatial specificity of its SOM
units is also a property of hippocampal place cells, but its units
correspond to much larger areas than the observed PFs of place
cells. However, it is able to reproduce human behavior data, and
thus can make empirically validated claims for cognitive (if not
biological) plausibility.

• The map-based path integrator (MPI) model by McNaughton
et al. (1996) was an influential and still highly relevant model of
spatial representation and path integration in brains, implemented
as a SNN. It was tested and evaluated by Samsonovich and
McNaughton (1997) and later reviewed and argued to be plausible
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Fig. 6. Overview of neural network models evaluated in simulated environments.

Fig. 7. Overview of neural network models evaluated in simulated environments.

based on neural evidence by McNaughton et al. (2006). The model
is based on ‘attractor maps’, continuous attractor networks in
which the mobility threshold for transitions between neighboring
attractors is negligibly small, as opposed to the large thresholds for
jumps between distant points (andwith global feedback inhibition
limiting total activity in the network)—this leads to activity focused
on one maximum unit and declining with distance from that unit
(i.e. an activity packet), tending tomove toward themaximal input
into the network or staying stationary in the absence of input.

The two most important modules are H, a one-dimensional
cyclic attractor map (CANN) encoding the head direction of an
agent (containing ‘HD cells’ arranged on a circle in the order
of their head-direction preference), and a P, a two-dimensional
attractor map used to encode the agent’s current position, as well
as for path integration (containing ‘place cells’ arranged in a plane,
with weights that decrease with distance). The head direction
estimate and position estimate correspond to the maxima of the
activity packets on the circular CANN and two-dimensional CANN,
respectively. To implement path integration for the HD cells, two
additional layers are required, one with units representing angular
velocity (H′), and a conjunctive layer representing both current

head direction and velocity (R—receiving connections from H and
H′), and projecting back to the appropriate HD units. The R layer
drives the HD activity packet in the right direction whenever the
agent is turning, since R units project to the right of the currently
most active HD cell for positive angular velocity, and to the left for
negative velocity (andwith below-threshold activity if the velocity
is zero).

Similarly, path integration for ‘place cells’ in P works by
employing a number of intermediate 2D CANN layers in the I
module, each layer corresponding to a different possible head
direction (and receiving activation from that HD cell in H), with
connections that project to units in the P layer, but displaced in the
respective head direction (e.g. if the ‘north’ HD cell activates the
corresponding I layer, units of this layer would project to a place
cell that is associated with more northern locations in the P layer,
instead of equivalent units in P corresponding to the same locations
as units in I). Thus, the projection to P from the currently active I
layer (depending on the most active HD cell) can move the ‘place
cell’ activity packet in the correct direction.

Finally, HD cells and place cell firing is not only driven by
path integration, but also by associated sensory representations,
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encoded in an additional module called V. Associating spatially
localized place cells with sensory representations can correct
accumulating path integration errors, as well as represent stimuli
encountered in a specific location. Such sensory associations can
be learned by Hebbian learning, whereas the weights driving the
path integration mechanism (such as from H to I) which are
preconfigured and fixed.

The model is implemented as an integrate and fire SNN, and
is able to numerically reproduce several single-cell experimental
findings, such as place field stretching upon changing environment
size, dependence of place field location on the entry site, slow
rotation of place fields in disoriented rats, and learning in novel
environments; and also makes a novel prediction which was
verified experimentally after publication of the model (activity
jumps in P upon significant unexpected changes in sensory input).
However, navigation or path planning or the representation of
objects on the map is not explicitly modeled by the authors. The
model’s main strength lies in proposing the first plausible neural
network model of path integration.

The model and its elements are neuroanatomically plausible;
MEC might perform path integration (passing activation to hip-
pocampal place cells), and the analogy between modeled and bio-
logical HD cells is clear (see McNaughton et al., 2006 for evidence).
Despite the anatomical plausibility of the elements, and the com-
monuse of attractor networks tomodel head direction, it should be
noted that no empirically validatedmechanism has been proposed
yet that could result in the very specific connectivity required by
continuous attractors in brains.10 The model is implemented as a
SNN, and is thus biologically more realistic than the reviewed ANN
models. Finally, it also succeeds in reproducing and even predicting
empirical data, further substantiating its plausibility.

• Another influential model was the ‘BBB’ model proposed by
Byrne et al. (2007) and based on the BVC model (Barry et al.,
2006) (the predecessor of which was implemented on a robot,
and reviewed in the previous subsection; Burgess et al., 2000).
The model is based on the brain areas involved in allocentric
spatial representations in the medial temporal lobe, as well as
the egocentric areas in the parietal lobe (see Section 2), and thus
accounts for both kinds of reference frames.

In the model, egocentric maps are represented by a set of
neurons in a grid, each tuned to respond most strongly to an
object at a particular distance and direction from the agent’s head.
Allocentric maps are represented similarly, using neurons with
specific preferred distances and directions, with the difference
that the neurons reference direction is fixed to features of the
environment, instead of the agent’s current head direction (these
are equivalent to BVCs). The model consists of an ‘egocentric
frame’ module (representing egocentric maps, corresponding to
the precuneus), a ‘HD cells’ module representing head direction,
a ‘transformation’ module (translating between egocentric and
allocentric maps, corresponding to RSC), an ‘allocentric frame’
module (representing allocentric maps, suggested to correspond
to BVCs), a ‘place cell modules’ (representing current location
and associating sensory representations with locations), and an
‘object identity module’ (for sensory representations, with each
unit representing an object or landmark; corresponding to the
perirhinal cortex).

The network has a ‘top down’ (temporal to parietal) and a ‘bot-
tom up’ (parietal to temporal) phase, during which the allocentric

10 However, there is some empirical evidence substantiating the existence of
continuous attractors in brains (Yoon et al., 2013).
McNaughton’s continuous attractor networks are also prone to accumulating

errors, requiring external sensory input to correct them, and have distorted firing
fields at the edges of the network. Later work has improved these issues (e.g. Burak
& Fiete, 2009).

map updates the egocentric one and vice versa (the information
flow in the opposite direction is blocked in each phase). Similarly
to the BVC model and its predecessors (Burgess et al., 2000), place
cell firing is driven by BVCs (the firing of which in turn depends
on the distances and directions of boundaries). The ‘transforma-
tion’ module contains N identical subpopulations, each tuned to a
specific head-direction, and connected to the egocentric map so as
to rotate it by the angle of that head direction (to translate it to a
north-oriented allocentric reference frame). At each time step, only
the subpopulation corresponding to the currently active HD cell is
active. Just like in the previousmodel, HD cell activities are updated
using CANN dynamics and angular velocity input; however, unlike
the MPI, linear path integration is not performed by the allocentric
representation. Instead, the ‘transformationmodule’ performs this
function aswell, by having an alternative set of pre-trainedweights
that result not only in the rotation but also in the translation of a
map by a constant amount (the model only accounts for constant
velocities).

The model is able to learn allocentric as well as egocentric
representations of the local space surrounding the agent in a
simulation, and is the only reviewed neural network-based model
with the ability to translate between the two. It is also able to
mentally explore representations, and to plan routes, by mentally
generating velocity signals (‘mock motor efference’) which are
decoupled from the motors. However, it cannot plan novel routes
(e.g. shortcuts/detours).

Because of the clear correspondence of model parts and brain
areas, the authors are able to simulate ‘lesions’ (by selectively
deactivating model parts or connections) and to account for lesion
studies (failure to identify landmarks in half of the egocentric
space hemispheric neglect patients; and place cell firing with HD
cell lesions). They could also model mapping, path integration,
and a paradigm in which visual and path-integrative inputs were
conflicting.

The model was implemented as a biological neural network
(with rate-coded instead of spiking neurons). Its modules and con-
nections are based on neuroscientific, and psychological evidence,
and are highly plausible. The model was further strengthened by
evaluating it in lesion study paradigms and qualitatively compar-
ing the results with human and rat data.

Most reviewed neural network models accounting for naviga-
tion make use of either place cell-like units associated with units
representing motor actions, or a gradient ascent strategy, propa-
gating activation from a goal location in a heavily interconnected
place cell-like network, and always selecting directions that in-
crease the current activation, until eventually reaching the goal.
There is no direct evidence for either of these strategies actually
being used by brains (no action representations monosynaptically
connected to place cells have been found; and except for area CA3,
place cells do not seem to be heavily interconnected—and in any
case, such activity diffusion is inherently limited in range due to
signal decay in biologically realistic networks).

• In contrast to these navigation strategies, Erdem and
Hasselmo (2012) have proposed a SNN model of navigation based
on probing linear look-ahead trajectories in several candidate
directions to find a trajectory leading to the goal location.11
This model is also based on the neural correlates of allocentric
spatial memory in the medial temporal lobe, and incorporates
hierarchical spatial representations. It incorporates four modeled
medial temporal cell types, and an additional three cell types in a
‘PFC’ module.

11 Earlier, less neurally plausible models of the same group have also used
omnidirectional probing for navigation (Gorchetchnikov & Hasselmo, 2005).
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Suggested to correspond to the entorhinal cortex, it models
‘head-direction cells’, ‘persistent spiking cells’, and ‘grid cells’, and
corresponding to the hippocampus, it models ‘place cells’. The
prefrontal module in turn contains ‘recency cells’, ‘topology cells’,
and ‘reward cells’ (presumably corresponding to mPFC). HD cells
are modeled to have a receptive field at a specific preferred angle
from an anchor cue (they are only driven by sensory input, not by
self-motion, unlike CANN models of HD cells). Modeled grid cell
firing is based on the persistent spiking cell model (briefly, grid
fields arise from an interference oscillation in persistent spiking
cells) (Hasselmo, 2008). Place cells are driven by grid cells in the
model, as suggested before by theoretical models (Moser et al.,
2008; Solstad et al., 2006); place fields arise from a thresholded
product of the grid fields (the multiplication is implemented using
coincidence detection in the model).

In contrast to the metric place cell map, a topological map is
created in the PFC module. Each place cell is associated with a
corresponding recency, topology, and reward cell; and topology
cells are laterally interconnected. The activity of recency cells
decays exponentially in time; their firing depends on the time
elapsed since the last visit of the associated place cell. Each time
the agent visits a place cell, the topology layer’s lateral connections
are reinforced by Hebbian learning, depending on thresholded
current activities of recency cells, with the threshold controlling
what time window is considered ‘recently visited’ and which
topological weights should be reinforced. Finally, reward cells
are also associated with place cells, and fire persistently if their
corresponding place cell marks the location of a goal or reward.

During goal-directed navigation, the agent decides on what di-
rection to choose by probing several linear look-ahead trajectory
probes with different directions starting from its current loca-
tion. Each probe engages the HD cell–persistent spiking cell–grid
cell–place cell circuit as if the agent was physically moving along
the probe trajectory. If the probe leads to the activation of a reward
cell at the goal location, associated with a place cell, the rat pro-
ceeds to move in the direction of the probe. In order to avoid the
probes missing the goal location, and to allow reaching interme-
diate goals, the reward signal is diffused in the PFC module. Thus,
secondary goals associated with place cells close to the reward cell
(and thus receiving diffused activation from it) can be navigated to
first, until the agent gets close enough to find the actual, highest-
activated reward cellwith a probe. Finally, since only directions not
obstructed by an obstacle can be probed, the agent can navigate
around obstacles (but also find a novel shortcut once an obstacle is
removed and a novel probe direction to the reward becomes pos-
sible). The model was able to produce grid cell ensemble activity
resembling recorded ratmedial entorhinal neurons demonstrating
‘look-ahead’ activity in a T-maze navigation task (Gupta, Erdem, &
Hasselmo, 2013).

The model is able to learn both metric and topological maps,
and can perform path planning on the learned maps, including
planning novel routes such as shortcuts or detours.

This model is implemented as a SNN, using biologically realis-
tic modules and connectivity; furthermore, its look-ahead mech-
anism results in activity patterns resembling data from biological
neurons.

3.5. Spatial memory models in cognitive architectures

In contrast to computational cognitive models focused on
accounting for one or few specific processes, systems-level
cognitive architectures aim to comprehensively model a wide
range of cognitive phenomena, attempting to account for behavior
and structural properties of minds (Sun, 2007). Cognitive models
of specific processes can be implemented within the framework
of a systems-level cognitive architecture. Such models also play

an important role in cognitive science, providing detailed, formal
explanations, providing hypotheses, and guiding research (see
Introduction). However, the goal of being integratedwith a broadly
scoped, domain generic model – and desirability of being able
to function using the same mechanisms and internal parameters
as an agent running the same cognitive architecture in a
completely different task – sets the task ofmodelingwith cognitive
architectures apart from the task of developing cognitive models.

A large number of cognitive architectures have been proposed
(many of which deal with modeling spatial representations in
some way), too many to review here; we will aim to outline a
representative sample contributing to spatial memory modeling
instead of exhaustiveness, and only include architectures explicitly
claiming to model human or animal cognition (we omit the large
number of robotic or AI architectures uninterested in biological
cognition). More comprehensive reviews can be found in Duch,
Oentaryo, and Pasquier (2008), Goertzel, Lian, Arel, de Garis, and
Chen (2010) and Samsonovich (2010).

There is some intersection here with the previous two cate-
gories, since there are cognitive architectures that are exclusively
symbolic, exclusively neural network-based, or hybrid (combina-
tions of symbolic and neural network parts); we shall point out the
corresponding paradigm in the text, as well as in the comparison
in Table 1. To the authors knowledge, there exists no cognitive ar-
chitecture explicitly aiming to be cognitively plausible (i.e. model
humans or animals) which would account for navigation-space
spatial memory as well as being implemented on a real-world
robot in current literature. Thus we omit the ‘real-world’ category
from this section—all reviewed models run in simulations.

The popular ACT-R (Adaptive Control of Thought Rational)
cognitive architecture by Anderson, Matessa, and Lebiere (1997)
follows a production-rule based approach (productions consist of
sensory preconditions or ‘IF’ statements, and associated actions or
‘THEN’ statements executed when the precondition matches the
state of the world). It utilizes two types of memory: declarative
memory, encoding factual knowledge about theworld (as symbolic
entities called ‘chunks’), and procedural memory, containing
procedural knowledge in the form of productions (IF-THEN rules).
The general usefulness of these chunks and production rules is
stored in a neural network reflecting previous usage (which has
led some researchers to categorize ACT-R as a hybrid cognitive
architecture, despite it being primarily symbolic Duch et al., 2008).

Apart from memory, the central components of ACT-R are
perceptual-motor modules interfacing with the environment,
buffers, and a central pattern matcher for productions (matching,
selecting and executing production rules). This central module
is hypothesized to correspond to the basal ganglia in the brain.
ACT-R has been used to replicate a large number of psychological
experiments (Anderson et al., 2004). Although the original version
did not explicitly account for spatial cognition, it has later been
extended to include spatial memory models.

• One such extension, called ACT-R/S was proposed by Harrison
et al. (2003), adding two additional systems to ACT-R: a ‘manipu-
lative system’ (representing spatial characteristics of objects facil-
itating manipulation), and a ‘configural system’ (representing the
relative, approximate configuration of objects in space). The latter
consists of a ‘path integrator’ and a buffer containing a number of
spatial chunks called ‘configurals’, each storing an egocentric vec-
tor to an object along with its identity (ACT-R/S only includes ego-
centric representations). Objects attended to enter this configural
buffer, which holds the two or three most recent objects—when
this capacity is exceeded, the least recent chunk will be discarded
from this buffer (butwill still exist in ‘declarativememory’ for later
retrieval).

The ‘path integrator’ – instead of updating an allocentric loca-
tion representation – updates all egocentric representations in the
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Fig. 8. Overview of cognitive architectures evaluated in simulations.

Fig. 9. Overview of cognitive architectures evaluated in simulations.

configural buffer after eachmovement by themotor system (this is
feasible due to the small number of configurals activelymaintained
in the buffer). Apart fromobject identity, configurals storemultiple
vectors, to all edges of an object—in the implementedmodel,which
was two-dimensional, objects were approximated by their bound-
ing box, and four vectors were stored to the edges of that bounding
box (to the left, top, right, and bottom sides of an object). Multi-
ple configurals referring to the same object from different points
of view can be present in the model, which would have different
edge vectors but the same identity tag.

The authors implemented a food search model, which can
randomly explore an environment, try to recall a food location,
or visually search for food. The search is performed by requesting
unattended objects from the configural system, identifying it using
the visual system, and continuing the search if it is not food, or
setting it as a goal if it is. In the latter case, the agent orients itself
toward the food location, and begins another search (this time for
obstacles—any object that intersects its path to the food location).
If obstacles are found, the agent adds a subgoal to move to the left
or right of it, depending on which brings it closer to the goal. If no

obstacles are left, it moves to the goal location. During navigation,
the agent repeatedly checks if it has arrived at its destination, and
also repeatedly corrects path integration errors using its visual
system (that is, if the egocentric representations updated by path
integration do not match their perceived correct location, they are
corrected).

Furthermore, it encodes ‘episodic traces’ (current contents of
the configural buffer) at each step. If visual search fails to find food,
these episodic traces can be recalled to find previously identified
food locations as well as nearby objects (after which it can per-
form another visual search for those nearby objects and navigate
to them to get closer to the food location). The authors functionally
evaluate this model of path integration and navigation, and point
out functional similarities between configural chunks and primate
spatial-view cells.

The psychological plausibility of the ACT-R model and its
parameters (buffer capacities, timings etc.) have been extensively
strengthened in a large number of different paradigms. There is
also functional similarity between the egocentric representations
in this model, and egocentric representations in the brain
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(e.g. spatial-view cells). However, there is no clear structural
similarity between this model and neurobiology.

• Casimir by Schultheis and Barkowsky (2011) is a cognitive ar-
chitecture explicitly devised as a framework for computationally
modeling human spatial knowledge processing. Itsmain parts are a
long-term memory (LTM), working memory (WM), and a diagram
interaction component (externalizing WM representations on di-
agrams, or visually inspecting diagrams to build WM representa-
tions).

The LTM stores hierarchical, semantic network-like represen-
tations (nodes and connections between them; categories and ob-
jects as well as spatial relations are represented as nodes, whereas
connections signify associations; e.g. three nodes and two connec-
tions could represent the relation ‘Paris’-‘south of’-‘London’). The
WM can be split into three parts, one concerned with retrieving
representations from LTM based on a ‘problem representation’,
one performing memory updates of WM and LTM, and a ‘visuo-
spatial WM’ part storing and manipulating short-term representa-
tions relevant to the current problem. The problem representation
also takes the form of a semantic network, and allows the specifi-
cation of a query (such as the cardinal direction to a location, or a
distance between locations).

Retrieval from LTM works by spreading activation over the
nodes in LTM from the problem representation; the subnet
(‘fragment’) with the highest sum of activation is retrieved to the
visuo-spatial WM (retrieved subnets also have to be directly or
indirectly interlinked). This LTM structure and retrieval process
can account for some human memory phenomena. Knowledge
from different sources can enter visuo-spatial WM, including
knowledge retrieved from LTM, built by visual inspection, or
constructed from previous representations; and is represented
not symbolically but in a spatio-analogical form (i.e. there is a
structural correspondence between the representations and what
they represent in the world).

Casimir assumes that there is no strict division between spa-
tial and visual representations, but, rather, a continuum between
the extremes of simple nonmodal spatial mental models (spa-
tial) and mental images (visual). Representations are deemed
more visual with increasing numbers of relations, involved knowl-
edge types (such as distance, direction, topological knowledge),
specificity, and exemplarity (concrete exemplars or prototypes).
A ‘conversion’ process in working memory can construct and
extend representations, adding retrieved fragments if necessary,
or converting fragments to spatial mental models. An ‘exploration’
process in turn can extract spatial information from existing rep-
resentations, or infer knowledge using spatial reasoning.

Because of its emphasis on structural modeling (spatio-
analogical instead of symbolic representations), Casimir is argued
to exceed the modeling capabilities of other cognitive architec-
tures in the spatial domain (Schultheis & Barkowsky, 2011). The
architecture was tested on paradigms involving eye movements in
a spatial reasoning task (Sima, Lindner, Schultheis, & Barkowsky,
2010), mental scanning (the effect of the time to scan between en-
tities in a mental image increasing linearly with the distance be-
tween them), mental reinterpretation of spatial relations (Sima,
2011), and recall effects (Schultheis, Lile, & Barkowsky, 2007). The
model has a simple visual perception implementation facilitating
the replication of such experiments. However, navigation has not
been implemented.

The model is heavily based on prevalent cognitive science
theories of mental representations (e.g. analogical representations
Barsalou, 2008,mentalmodelsMani & Johnson-Laird, 1982,mental
images Shepard & Metzler, 1971), and replicates human behavior
data in a number of paradigms. However, it does not aim to be
biologically plausible, and its parts do not clearly correspond to
brain areas or neurons.

• CLARION by Sun and Zhang (2004) is a hybrid cognitive ar-
chitecture accounting for spatial representations. It incorporates
explicit (symbolic) as well as implicit (subsymbolic) knowledge
through its four memory modules: the action-centered subsys-
tem (regulating procedural knowledge and actions), non-action-
centered subsystem (maintaining general declarative knowledge),
motivational subsystem (providing motivation for action), and
metacognitive subsystem (monitoring and directing the opera-
tions of the other subsystems).

Each module has a localist-distributed representation (explicit
knowledge) and a distributed section stored in a neural network
(implicit knowledge). Spatial representations can be acquired by
associating explicit knowledge in the form of ‘chunks’ (similarly
to ACT-R chunks—e.g. a chunk representing a reward) with the
corresponding implicit representation of sensory input.

CLARION’s ability to represent and navigate in space is shown in
the complex minefield navigation (MN) task implemented by Sun,
Merrill, and Peterson (2001). In this task, an agent has to navigate
through a two-dimensional minefield to reach a target. The agent
only has access to limited sensory information (short-range sonar
readings tomines, range and bearing gauges showing distance and
direction to the target, and the remaining time), and has to reach
the target in a limited amount of time. Only egocentric spatial
relations were used (distances and directions to nearby mines).
The agent used a type of reinforcement learning called Q-learning
(with a gradient reward depending on target distance, and a second
reward at the end depending on the agents success—depending on
how close it got to the target) to learn an optimal action policy.

The model was evaluated against human behavior data, and
produced trajectories and learning curves similar to humans in
this paradigm. It does not learn an allocentric map; rather, it uses
reinforcement learning to learn the optimal actions to reach its
goal given the obstacles in the environment. Information about the
current obstacles is represented as implicit knowledge in the ‘state’
layer of CLARION’s neural network (see Fig. 9).

Since the model uses very general modules (there is no special-
ized spatialmemorymodule), and since it consists of both symbolic
and neural network parts, it is difficult to identify structural corre-
spondences to neurobiology. CLARION has succeeded in modeling
human behavior data from a large number of paradigms – includ-
ing the above mentioned minefield navigation task – and thus can
be called cognitively plausible (Sun & Zhang, 2004).

• Another hybrid cognitive architecture is LIDA12 by Franklin,
Madl, D’Mello, and Snaider (2014), with recently developed spa-
tial capabilitiesMadl et al. (2013). Although notmodeling neurons,
LIDA is biologically inspired, with each major part of the model
functionally mapped to brain areas (Franklin et al., 2014; Goertzel
et al., 2010), and is largely based on theGlobalWorkspace Theory of
functional consciousness (Baars & Franklin, 2009; Baars, Franklin,
& Ramsoy, 2013), as well as a number of psychological and neu-
ropsychological theories including grounded cognition (Barsalou,
2008), working memory (Baddeley, 1992), and Slomans H-CogAff
cognitive framework (Sloman, 1998) among others. It is a recent
architecture and only partially implemented, but has replicated a
number of psychological experiments (Franklin et al., 2014).

LIDA’s cognitive cycles, corresponding to the action–perception
cycles in neuroscience Fuster (2002), consist of three phases. The
‘understanding’ phase includes sensing the environment, detecting
features, recognizing objects and categories, and building internal
representations. The ‘attending’ phase is responsible for deciding

12 Learning Intelligent Distribution Agent (Learning IDA), where IDA is a software
personnel agent hand-crafted for the US Navy that automates the process of finding
new billets (jobs) for sailors at the end of a tour of duty (Franklin, 2003). LIDA adds
learning to IDA and extend its architecture in many other ways.
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what portion of this representation should be attended to and
broadcast to the rest of the system, making it the current contents
of consciousness. This portion allows the agent to choose an
appropriate action to execute in the ‘action’ phase. During the
understanding phase, percepts are recognized based on LIDA’s
perceptual knowledge base, the Perceptual Associative Memory
(PAM), which is a connectionist structure containing nodes with
activation connected by links. Recognized objects, categories, etc.
are stored in LIDA’s preconscious ‘Working Memory’, and are
represented by structures of PAM nodes and links between them.

These PAM node structures – parts of the PAM network
– are hierarchical, modal representations similar to Barsalou’s
perceptual symbols Barsalou (2008). Since they are hierarchical
and associative, they are well-suited to represent ‘hierarchical
cognitive maps’, by associating PAM nodes representing objects
or landmarks with ‘place nodes’. Place nodes are special kinds
of PAM nodes representing a spatial location; they are arranged
in layers of two-dimensional rectangular grids with different
resolutions (distances between the place nodes). The layers
are interconnected, multiple high-resolution place nodes project
to a single low-resolution place node (with overlap); which
implements spatial clustering. This can account for systematic
position errors in humans due to hierarchical representation (Madl
et al., 2013).

LIDA agents use a gradient ascent based navigation strategy
(passing activation from a goal location through the place node
network), similarly to some of the neural network models above.
However, a significant difference is that hierarchical map repre-
sentation is used during navigation (first a rough route is planned
using the lowest resolution layer, and then successively refined
on the higher resolution layers). It can be shown that in multi-
goal navigation tasks, gradient ascent on a single map leads to a
sub-optimal nearest-neighbor strategy (as does the ‘look-ahead’
approach (Erdem & Hasselmo, 2012) and RL with simple goal-
distances as rewards (Barrera et al., 2011; Strösslin et al., 2005),
although RL with different reward functions can improve this).
Humans significantly outperform the nearest-neighbor strategy in
multi-goal paradigms such as the traveling salesperson problem13

(TSP), planning near-optimal routes. The gradient ascent strategy
on a hierarchical cognitive map in LIDA significantly improves
route optimality, without sacrificing the biological plausibility of
a connectionist map for a symbolic planning mechanism.

LIDA-based agents have been shown to be able to perform
mapping and navigation, and model human behavior in different
tasks, including modeling map recall errors, capacity limits of
spatial working memory, and errors in the TSP paradigm (Madl
et al., 2013) (work is underway to embody LIDA on a robot
(Franklin et al., 2014) and to extend it with both egocentric and
allocentric real-world spatial memory). Although not a biological
neural network, spatialmemory in LIDA is connectionist; and there
is similarity between ‘place nodes’ and hippocampal place cells
(also accounting for hierarchies in an empirically substantiated
fashion, unlike most other models).

3.6. Comparative table

Table 1 shows a comparison of the reviewed models, charac-
terizing them according to the criteria outlined in Section 3. It
compares the level of modeling by stating the elemental position
representation for each model, as well as the reference frames or
types of representations accounted for, the learning mechanism,

13 The traveling salesperson problem requires planning the shortest route visiting
each location among a fixed number of locations exactly once, and then returning
to the starting location.

the structural similarity between models and underlying neural
mechanisms, and the complexity of the environments and types of
tasks inwhich themodels have been evaluated (to help assess their
generality and complexity). Quantitative ‘goodness of fit’ was not
included because most models did not perform quantitative sta-
tistical evaluations against data; and the exceptions that did used
different tasks.

4. Discussion

Direct comparison of the reviewed models is made difficult by
their very different goals and paradigms. Although computational
cognitive models should be evaluated quantitatively as well as
qualitatively, the majority of the reviewed models were not
quantitatively evaluated against actual behavior data. Exceptions
include:

• (Symbolic—Brom et al., 2012): replication of human accuracies
in pointing tasks (subjects/agent had to remember locations of
several objects in a room, and subsequently asked to point to
the locations after the objects have been removed)

• (Neural network-based—Barry et al., 2006; Burgess et al., 2000):
This model is the only reviewed model which was compared
to both electrophysiological data from rat place cells, and
behavioral data human subjects. It could successfully account
for the effects of changed environment size on both place fields
and on remembered locations of objects.

• (Neural network-based—Barrera et al., 2011): The model’s
learning curve when learning to reach a goal in a maze was
comparable to that of rats in an experiment

• (Neural network-based—Voicu, 2003): The model imposed
hierarchies comparable to human hierarchical cognitive maps,
and resulted in comparable distance estimation biases

• (Cognitive architecture-based—Schultheis & Barkowsky, 2011):
Replication of eye movements in spatial reasoning, mental
scanning,mental reinterpretation of spatial relations, and recall
effects

• (Cognitive architecture-based—Sun&Zhang, 2004): Replication
of human data in a minefield navigation task

• (Cognitive architecture-based—Madl et al., 2013): Replication
of human performance in the traveling salesman problem and
of map representation errors

Apart from psychological plausibility in terms of comparable
behavior, the functional advantages of the models are also impor-
tant aspects. Although all models represent spatial information in
some form, there is a large difference in terms of the complexity of
the environments they can handle, the accuracy of these represen-
tations, and the range of tasks they can be used for.

It should be noted that although all of these models can be
said to create maps (of different kinds and different accuracies),
only a few of them can be said to be modeling ‘cognitive maps’
in the sense of Tolman (1948), who has pointed out that cognitive
maps can be used to plan novel routes such as shortcuts or detours
(for known routes, no allocentric map would be necessary). In this
sense, only 7models are accounting for cognitivemaps—those that
can perform path planning (see also the ‘Abilities’ row in Figs. 2–
9): Beeson et al. (2010), Byrne et al. (2007), Erdem and Hasselmo
(2012), Gopal and Smith (1990), Madl et al. (2013), Schölkopf and
Mallot (1995) and Voicu (2003).

In general, models capable of handling a higher environmental
complexity in Table 1 should be regarded as functionally more
powerful. Models capable of running in the real world face greater
challenges and are more difficult to implement than simulated
models, since they need to cope with noise and errors both in their
sensory input andmotor output, as well as with the usually greater
complexity and unpredictability of real environments.
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Global mapping, i.e. correctly aligning multiple maps of local
surroundings in the same reference frame, and loop closing, i.e. the
problem of recognizing a place the agent has seen before (and
correcting representation errors), are particularly difficult tasks in
the real world. The main reason for this is that different places can
look very similar (perceptual aliasing), and the same place can also
look different at various times in dynamic environments. Only two
of the reviewed models are able to perform both global mapping
and loop closing in the real world (Beeson et al., 2010; Jefferies
et al., 2008).

Looking at the structural similarities (which roughly translate
to biological plausibility) and the environmental complexities in
the table, it can be seen that in most cases there is a tradeoff
between the two. Models with high biological realism (SNNs, e.g.
McNaughton et al., 1996; or Erdem & Hasselmo, 2012) usually
have trouble handling highly complex real-world environments
(due mainly to their high computational demands, but also to the
observation that it is easier to model high-level cognitive tasks
such as planning with simpler – such as symbolic – models). In
contrast, models built to work well on real-world robots (such
as HSSH) usually cannot be called biologically realistic, and also
have difficulties fitting human behavior data (due mainly to the
abstractions and methodological shortcuts employed to quickly
develop efficient algorithms that can tackle complex input, and
also due to computational restrictions of robots).

It is very difficult to implement and run a model that incorpo-
rates both high psychological and biological plausibility and the
ability to handle real-world environments. The model by Barrera
et al. (2011) is notable because although it cannot close the loop
and cannot perform globalmapping, it can learn a real-worldmaze
with a learning curve similar to rats, using a model that is highly
structurally similar to rat brains.

The line of research attempting to implement real-world ca-
pable cognitive models can be expected to yield important in-
sights in the cognitive sciences. First, because of the desirability
of realistic input and output for accurate models of biological cog-
nition (sticking to overly simplistic environments causes similar
difficulties for a mechanistic understanding of cognition as study-
ing sphericalwooden balls or the solar systemmodelwould for nu-
clear physicists). Second, robotics and machine learning research
has already provided significant insights and facilitated break-
throughs in cognitive neuroscience, and there is reason to believe
it will continue to do so. Examples are the development of statisti-
cal methods to deal with sensory uncertainty (which later proved
to help explain behavioral and neural data, starting the ‘Bayesian
brain’ movement; Knill & Pouget, 2004), machine learning ap-
proaches for learning optimal action policies in unpredictable en-
vironments (reinforcement learning, which has contributed to
understanding the neuroscientific study of conditioning; Maia,
2009), or dynamical systems and control theory (which have in-
spired dynamical systems approaches to cognition; Beer, 2000).

4.1. Open questions

It is interesting to note that the vast majority of the reviewed
models incorporate allocentric representations (every reviewed
real-world capable model does), and that a majority of the models
capable of handling large-scale real-world environments represent
both metric and topological spatial maps. The first point – the
importance of allocentric spatial representations –has been known
to cognitive science for many decades (Tolman, 1948). However,
surprisingly little psychology and neuroscience research effort
has been invested in identifying the mechanisms involved in
topologicalmapping (for example, there is still nowell-established
neural correlate of topological maps in the brain—see Section 2;

furthermore, the computational mechanism of how humansmight
partition space into topological maps is not well understood).

Models incorporating topological spatial representations such
as the ones reviewed above might provide inspiration and insight
for such research (unfortunately, none of themempirically validate
theirmodelwith regard to topologicalmapping). Using empirically
verified computational cognitive models to try out hypotheses
regarding topological representation or the topology building
mechanism in humans or animals would be an interesting and
mostly unexplored line of research.

Along similar lines, it has long been suspected that the
‘cognitive map’ might be hierarchical (Derdikman & Moser, 2010;
Hirtle & Jonides, 1985; McNamara, 1986), and multiple models
incorporate hierarchies in their maps (such as HSSH, the model
by Voicu, 2003, LIDA, and Casimir). Plausible neural correlates of
hierarchical maps have also been identified in hippocampal and
entorhinal cortical neurons with significantly varying firing field
sizes (Derdikman &Moser, 2010). However, themechanismwhich
humans or animals use to cluster spatial representations into
maps and sub-maps and organize them into a hierarchy is not yet
understood (it is likely that the simple distance-based clustering
mechanisms employed by most existing hierarchical models are
insufficient to explain the error patterns caused by hierarchical
maps; for example, perceptual or functional similarity almost
certainly play a role in the mechanism organizing landmarks
hierarchically in brains).

A further not fully understood part of spatial memory is
the transformation process converting between egocentric and
allocentric representations. Some of the reviewed models include
both types of representations (Beeson et al., 2010; Brom et al.,
2012; Byrne et al., 2007; Franz et al., 2008; Schultheis &
Barkowsky, 2011). However, none of these models have evaluated
their transformation mechanism against empirical data, with the
exception of the neural network model by Byrne et al. (2007)
(which seems to predict heavily coordinated and correlated
activity in the neural correlates of transformation, i.e. the RSC; but
such activity has been not observed).

A question that has yielded significant progress – but still
no mature models explaining empirical data – regards the
identification of ‘landmarks’ (how does the perceptual system
identify landmarks, using them for orientation, as opposed to
navigationally irrelevant stimuli?). Factors such as distance,
stability, uniqueness, perceptual salience, and functional relevance
seem toplay a role. However,most existing spatialmemorymodels
either focus on localizing and navigating based on geometry, or
are tested in sparse environments where a strategy of using every
encountered object as a landmark is viable.

Finally, progress in the field of modeling spatial memory
could be made by integrating the insights of individual models
accounting for various phenomena (egocentric/allocentric, met-
ric/topological, local/global, associative/reinforcement learning,
geometric/landmark based, etc.) and tasks within the samemodel.
Both the task of integrating these disparate processes, and evalu-
ating them in a large number of tasks and settings, could yield new
insights. Cognitive architectures would be in a uniquely suitable
position to incorporate such an integration due to their generality
and pre-existing non-spatial cognitive mechanisms.

4.2. Methods for verifying the biological plausibility of cognitive
spatial memory models

The overview of Section 3 has outlined a number of qualitative
and quantitative ways to evaluate computational models. In this
section, we shall focus on describing recent methods for judging
the biological plausibility of a model. Apart from qualitative
evaluations of structural similarity to the underlying neurobiology
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(such as the similarities in Table 1), it is also possible to empirically
validate biological plausibility by comparing model predictions
with neuroscientific data.

For biologically realistic neural network models, the most
straightforward way of empirical verification is comparison
with in-vivo electrophysiological single-unit recordings (in which
microelectrodes are used to measure the action potentials of
individual neurons in the brain of a live animal performing a task,
preferably the same task in a similar environment as that of the
model). For ANNs, a mapping function can be designed converting
their numeric activation value to a spike rate; in the case of SNNs,
the comparison is straightforward (spike trains or even voltage
traces can be compared). The BVC model (Barry et al., 2006) is an
example computational model successfully predicting the firing
activity of spatially relevant neurons in single-unit recordings.

However, formostmodels, this is not viable;most often because
they do not contain representations analogous to single biological
neurons. In this case, higher-level brain-imaging data can be used
for evaluation, which shows the time-dependent activity of brain
areas involved in performing a task. Most frequently employed
examples are fMRI (functional magnetic resonance imaging, a
technique with high spatial but low temporal resolution) and
EEG (electroencephalography, with low spatial but high temporal
resolution). For models whose modules have been mapped to
brain areas, it is possible to convert the activity of model parts
into predicted brain area activations, and thus compare the model
with neuroscientific data. Since the mapping function is arbitrary
and does not place structural requirements on the underlying
model, this procedure is possible even for models with little or no
biological realism.

The ACT-R cognitive architecture is an example model that
has used this approach successfully. ACT-R’s major modules have
been mapped to brain areas (such as the imaginal module to the
posterior parietal region, or the central pattern matcher to the
basal ganglia), and a suitable mapping function has been devised
that converts activity in these modules into activation patterns
resembling fMRI data (Qin et al., 2007), andmore recently, EEGdata
(Motomura, Ojima, & Zhong, 2009), successfully predicting brain
activity in novel circumstances (Anderson et al., 2008).

5. Conclusion

Having briefly summarized the basis of spatial memory in
brains, we then reviewed a number of computational cognitive
models of spatial memory, and presented a comparative table to
help overview the major modeling directions taken within this
large and highly fragmented topic. Although focusing on models
concerned with human or spatial cognition, we have attempted
to bring the fields of cognitive science, robotics, and neuroscience
closer together by highlighting sources of overlap and interaction,
and the modeling approaches most closely matched to each. We
have pointed out what robotics and neuroscience can contribute
to the field of cognitive modeling, and proposed some novel
potential mappings between parts of existing models and relevant
brain areas, in the hope of facilitating understanding, comparison,
and evaluation. We have also outlined some open questions in
the field, and how current (and future) models could address
these questions. Computational cognitive modeling has much to
offer spatial memory research (and cognitive science research in
general), verifying existing hypotheses, yielding new ones, and
guiding research.
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Introduction

For successful navigation, an organism needs to be able to

localize itself (i.e. determine its position and orientation) as well as

its goal, and it needs to be able to calculate a route between these

locations. Since the first reports of physiological evidence for

hippocampal ‘place cells’ [1] which exhibit increased firing only in

specific locations in the environment, there have been a large

number of empirical findings supporting the idea that the

Hippocampal-Entorhinal Complex (HEC) is a major neuronal

correlate underlying spatial localization and mapping [2].

To keep track of their location when they move, mammals must

integrate self-motion signals, and use them to update their location

estimate, using a process commonly referred to as path integration

or dead reckoning. It has been suggested that self-motion

information might be the primary constituent in the formation

of the firing fields of place cells [3,4]. However, path integration

alone is prone to accumulating errors (arising from the inaccuracy

of sensory inputs and neuronal noise), which add up over time

until the location estimate becomes too inaccurate to allow for

efficient navigation [5,6]. Because path integration errors are

cumulative, path integrators have to be corrected using allothetic

sensory information from the environment in order to ensure that

the estimated location will stay close to the true location.

It has also been suggested that place cells rely heavily on visual

information [1,2,7]. However, the question of how exactly

different sources of information are combined, from different

boundaries or landmarks, has received little attention in the

literature. This paper investigates how place cells in the

Hippocampus might integrate information to provide an accurate

location estimate. We propose that the integration of cues from

different sources might occur in an approximately Bayesian

fashion; i.e. that the information is weighted according to its

accuracy when combined with a final estimate, with more precise

information receiving a higher importance weight. We provide

supporting evidence and theoretical arguments for this claim in the

Results section. We will compare neuronal recordings of place cells

with predictions of a Bayesian model, and present a possible

explanation for how approximate Bayesian inference, although

insufficient to fully explain firing fields, might provide a useful

framework within which to understand cue integration. Finally, we

will present a possible model of how Bayesian inference might be

implemented at the neuronal level in the hippocampus.

Our results are consistent with the ‘Bayesian brain hypothesis’

[8]; the idea that the brain integrates information in a statistically

optimal fashion. There is increasing behavioural evidence for

Bayesian informational integration for different modalities, e.g. for

visual and haptic [9], for force [10], but also for spatial

information, e.g. [11] (see Discussion). Other models of statistically

optimal or near-optimal spatial cue integration have been

proposed previously [11–14], although mostly at Marr’s compu-

tational or algorithmic level, rather than at a physical level. The

latter, mechanistic Bayesian view, has been cautioned against due

to lacking evidence on the single neuron level [15]. Our results

partially account for three disparate single-cell electrophysiological

data sets using a Bayesian framework, and suggest that although

such models might be too simple to fully explain patterns of

neuronal firing, they will still be highly valuable to our

understanding of the relationship between neuronal activity and

the environment.
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Neuronal correlates of localization
Here we briefly summarize the neuroscientific literature

concerning how mammalian brains represent space. Most of

these results come from animal (rat, and to a lesser extent, monkey)

cellular recording studies, although there is some recent evidence

substantiating the existence of these cell types in humans.

Four types of cells play an important role for allocentric spatial

representations in mammalian brains:

1. Grid cells in the medial entorhinal cortex show increased

firing at multiple locations, regularly positioned in a grid across

the environment consisting of equilateral triangles [16]. Grids

from neighbouring cells share the same orientation, but have

different and randomly distributed offsets, meaning that a small

number of them can cover an entire environment. It has also

been suggested that grid cells play a major role in path

integration, their activation being updated depending on the

animal’s movement speed and direction [2,16–18]. There is

evidence to suggest that they exist not only in mammals, but

also in the human entorhinal cortex (EC) [19].

2. Head-direction cells fire whenever the animal’s head is

pointing in a certain direction. The primary circuit responsible

for head direction signals projects from the dorsal tegmental

nucleus to the lateral mammillary nucleus, anterior thalamus

and postsubiculum, terminating in the entorhinal cortex [20].

There is evidence that head direction cells exist in the human

brain within the medial parietal cortex [21].

3. Border cells and boundary vector cells (BVCs), which are

cells with boundary related firing properties. The former

[22,23] seem to fire in proximity to environment boundaries,

while the firing of the latter [2,24] depends on boundary

proximity as well as direction relative to the mammal’s head.

Cells with these properties have been found in the mammalian

subiculum and entorhinal cortex [22,23], and there is also

some behavioural evidence substantiating their existence in

humans [24].

4. Place cells are pyramidal cells in the hippocampus which

exhibit strongly increased firing in specific spatial locations,

largely independent from orientation in open environments

[2,25], thus providing a representation of an animal’s (or

human’s [26]) location in the environment. A possible

explanation for the formation of place fields (the areas of the

environment in which place cells show increased firing) is that

they emerge from a combination of grid cell inputs on different

scales [3,4]. It has also been proposed that place fields might be

mainly driven by environmental geometry, arising from a sum

of boundary vector cell inputs [7,24]. This model has

successfully accounted for a number of empirical observations,

e.g. the effects of environment deformations [7], or of inserting

a barrier into an environment, on place fields [24].

Hippocampal place cells play a prominent role in navigation,

the association of episodic memories with places, and other

important spatio-cognitive functions, which might be impaired if

their place fields were inaccurate. However, neither of the outlined

place field models fully explain how place cells combine different

inputs for accurate localization. The grid cell input model is

subject to corruption of the location estimate by accumulating

errors which would eventually render the estimate useless unless

corrected by observations (see Introduction). On the other hand,

boundary vectors alone (if driven solely by geometry, not by

features) do not always yield unambiguous location estimates [14].

Even given complex visual information (which border-related cells

do not seem to respond to [22], and of which a rat might not see

much, given its poor visual acuity [27]), localization without path

integration is difficult (localization without odometry was solved in

robotics only recently, and is still much more error-prone than

combining observations with odometry [28]). For many place cells,

both the path integration inputs from grid cells and observation

inputs from border-related cells (and possibly others) seem to be

required in order to ensure accuracy and certainty. This has been

pointed out before (e.g. [29]), but the question of how exactly these

inputs are combined has received little attention (but see the

Discussion section for related work).

A further, as of yet unanswered, question is how exactly

information from different sources (boundaries, landmarks,

different senses etc.) might be combined. Although the BVC

model made detailed predictions as to the kinds of inputs received

by place cells, was fitted successfully to electrophysiological data,

and matched empirical observations (such as what happens with

place fields on barrier insertion), it does not propose a general

principle of cue integration. In order for the model to accurately

reflect place field location and size in a given environment, a

number of weight and tuning parameters have to be adjusted for

every single place cell [7,24]. In contrast, the Bayesian hypothesis

that we investigate in this work implies a general underlying

principle for how inputs into place cells are weighted; according to

their precision and with more accurate inputs influencing the

result stronger than less accurate inputs. The biggest advantage of

such a general principle is that it significantly reduces the number

of parameters required to account for large datasets (see Results).

Please note that we adopt a highly simplified and constrained

view of HEC function and anatomy in this paper. Hippocampal

cells play a role in many cognitive functions other than spatial

localization; among others long-term episodic/declarative memo-

ry [30,31], memory based prediction [32], and possibly short-term

memory [33] and perception [34]. Furthermore, place cells receive

a broader array of inputs than just those transmitting visual and

path integration information, such as odours and tactile informa-

tion [35]. Finally, while cells from different parts of the

hippocampus differ in their connectivity and in the information

they receive, we believe that dealing with a small subset of

functionality and anatomy suffices for investigating the existence of

statistically near-optimal information integration in place cells.

Hypotheses
In this paper, we describe a Bayesian mechanism of information

integration in place cells accounting for place field formation. This

mechanism rests on the following hypotheses:

H1. Some Hippocampal place cells perform approximate

Bayesian cue integration - they combine different sources of

information in an approximately Bayes-optimal fashion, weighting

inputs according to their precision. This means that when sensory

inputs change, some place fields should shift and resize in a

manner predictable by a Bayesian model.

H2. A Bayesian view requires that HEC neurons encode a

mammal’s uncertainty regarding its position, in addition to its

actual location. We hypothesize that the sizes of place cell firing

fields are correlated with this location uncertainty.

H3. The uncertainty of distance measurements to borders sb

depends on the boundary distance db, and can be approximated

by a linear relationship using some constant s (cf. Weber’s law):

sb~s:db. There is some physiological evidence for this in border-

related cells [22,23], as well as some behavioural evidence that

Weber’s law holds for spatial distance perception in rats [36] and

mammals [37]. That the tuning breadths of BVCs should increase

with distance is also a prerequisite of the Boundary Vector Cell

Bayesian Cue Integration in Place Cells
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model [7,24], has been successfully fit to neuronal and behavioural

data, and is supported by physiological evidence [22].

These hypotheses are interdependent, and will be investigated

together. To generate verifiable predictions from the Bayesian

hypothesis (H1) we need to assume how uncertainty is represented

(H2) and how it can be derived from the geometry of the

environment (H3). Together, these hypotheses allow the making of

predictions about the sizes of place cell firing fields, given the

distances of all boundaries, in some cases using just a single

parameter specifying how uncertainty depends on distance. The

Bayesian mechanism attempts to account for the sizes of single

firing fields, deriving them from the distances of boundaries or

obstacles (H3) - thus, place cells with multiple firing fields can be

modelled by dealing with each firing field separately, even under

Gaussian assumptions. In the Discussion section, we briefly

describe how the model could be extended by relaxing some of

its assumptions, and we report applications of the extended model

in the Results section. We do not claim that place cells implement

any statistical equation (especially not the simplistic ones described

here), but we propose that investigating their firing fields within a

statistical framework can yield useful insights about the way they

combine information.

Methods

The hypothesis of approximate Bayesian integration of infor-

mation in place cells (H1) yields verifiable electrophysiological

predictions. Since we hypothesized that place cells can perform

approximate Bayesian cue integration (H1), and place field sizes

are correlated with uncertainty (H2), and that uncertainty depends

on distance (H3), expected place field sizes can be predicted from

the geometry of an environment using a Bayesian model. This

section will outline such a Bayesian model.

Model assumptions
To simplify the mathematics, and because this assumption fits

our data well, we will assume elliptical firing fields shaped like two-

dimensional Gaussians. We do not claim that place cells encode

exact Gaussian distributions (there are also asymmetric place fields

in the hippocampus - see the Discussion for potential extensions of

this simple model). However, investigating their firing fields in a

Bayesian framework can yield useful insights about cue integra-

tion. The predictions in the Results section are generated from

Bayesian models using Gaussian probability distributions to

represent locations, in simplified two-dimensional environments,

with sizes and distances adjusted to those of the respective in-vivo

experiments.

Bayesian spatial cue integration
Bayesian inference under Gaussian assumptions implies that

information from different observations should be weighted

according to its accuracy. This claim can be formalized using

Bayes’ rule, according to which the probability distribution of the

location given a number of observations can be calculated from

p(xDO)!p(x)p(ODx) ð1Þ

where x is the animals location in the environment and

O~fo1, � � � ,oNg represents a set of N observations. p(xDO) is

the posterior location belief, given all observations. p(x) is a prior

belief over the location (for example via path integration), and

p(ODx) represents the probability of the current observations given

x (such as boundaries or landmarks), characterized by the distance

from x and their uncertainty (see below). Since observations can be

assumed to be conditionally independent given the location (this is

an assumption commonly made in robotics, see [38,39]), we can

expand equation (1) to

p(xDO)!p(x) P
N

i~1
p(oi Dx): ð2Þ

In this simplified model, the probability distributions are

assumed to be Gaussian. Thus, for multiple spatial dimensions,

equation (2) can be written as

N (m̂m,ŜS)~ªN (mp,Sp) P
N

i~1
N (mo,i,So,i): ð3Þ

In the case of a single spatial dimension, and in environments

where spatial dimensions can be assumed to be independent and

thus can be considered separately, equation (2) can be written as

N (m̂mx,ŝsx)~ªN (mp,sp) P
N

i~1
N (mo,i,so,i): ð4Þ

Here, m̂m (or m̂mx in one dimension) is the mean of the posterior or

the ‘best guess’ location, ŜS (or ŝsx in one dimension) the

uncertainty (covariance, or standard deviation) associated with

this location, mp (or mp) and Sp (or sp) are the mean and the

uncertainty of the prior belief location, mo,i (or mo,i) and So,i (or

so,i) are the means and uncertainties of the individual observa-

tions, and ª is a constant for normalization.

Calculating the uncertainty ŝsx (standard deviation) in one

spatial dimension is sometimes sufficient in environments in which

the width is negligible compared to the length (such as the first two

environments in the Results section: the linear track in Figure 1,

and the circular track in Figure 2). In the rectangular environ-

ments of Figure 3, the x and y dimensions were assumed to be

independent, and the uncertainties were calculated independently

- which is a reasonable approximation for this particular dataset,

since the observations (the walls of the environment) were

orthogonal. However, for more complex environments, the

covariances ŜS would have to be calculated from equation (3)

instead of individually calculating the standard deviations in each

dimension (see Text S1 in the Supporting Information for the

derivation of the covariance matrix from distance measurements,

for two-dimensional environments in which the dimensions cannot

be assumed to be independent).

In the one-dimensional case, solving equation (4) for the

standard deviations (see [40] for the derivation of the standard

deviation of a product of Gaussians), we can calculate the

uncertainty associated with the ‘best guess’ location, ŝsx, which for

a single observation is

ŝsx~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ps2
o

s2
pzs2

o

s
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( 1

s2
p

z
1

s2
o

)
{1

s
: ð5Þ
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For N observations, the uncertainty is:

ŝsx~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( 1

s2
p

z
XN

i~1

1

s2
o,i

)
{1

vuut
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( 1

s2
p

z
1

s2

XN

i~1

1

d2
i

)
{1

vuut
: ð6Þ

According to hypothesis 3 (see Hypotheses section), the

observation uncertainty is proportional to the distance di:

so,i~s:di. Thus, 1
s2

o,i

~ 1
s2

1
d2

i

. Substituting the precision or accuracy

of the prior belief 1
s2

p
by ap, and the factor 1

s2 influencing observation

precision (i.e. how rapidly the accuracy of distance judgements

decreases with increasing distance) by ao, we arrive at equation (7),

which can be used to calculate the resulting uncertainty given a

prior belief accuracy (which might depend on the path integrator)

and the distances and accuracies of all observations.

ŝsx~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(apzao

XN

i~1

1

d2
i

)
{1

vuut ð7Þ

Equation (7) was used in the Results section to predict

uncertainties (hypothesized to be correlated with place field sizes),

given distances to boundaries or landmarks. Explained proportions

of variance R2 were calculated from R2~1{SSerr=SStot, where

SSerr is the sum of squared differences between the model

prediction and the recorded data, and SStot is the total sum of

squares.

For the data analysed in the Results section, we assumed the

parameter ap to be negligible - ao was the sole parameter fitted to

the data. The single-unit place field data on the linear and circular

tracks (see first two subsections in Results) has been obtained from

electrodes in distal parts of area CA1 of the Hippocampus (closest

to the subiculum), which receive few connections from the neural

path integrator (MEC), as opposed to proximal CA1 [41]. These

recorded place cells were probably mainly driven by sensory

information (subiculum, LEC) instead of path integration infor-

mation (MEC) [41,42], which is why we assumed ap, the

parameter accounting for path integration accuracy, to be

negligible for these specific datasets.

Since the simplifying assumptions made by the model presented

here are too strong for real-world environments, and since place

cell firing is influenced by many more factors other than

environmental geometry, such a simple model cannot yield highly

accurate predictions of electrophysiological recordings. However,

if place cells integrate information in a Bayesian fashion, and if the

sizes of their place fields are correlated with uncertainty, then even

this simple model should be able to approximately account for the

distribution of place field sizes and their dependence on the

distances to boundaries and landmarks in the environment. For

example, place fields should be smaller close to boundaries and

larger far from boundaries. In the Results section, we will compare

these predictions of the Bayesian model to data recorded from rat

place cells in different environments.

Equation (7) can be extended to only include subsets of observed

objects (see Discussion) by introducing a set of binary variables

ui[ 0,1f g indicating whether a certain object observation is being

used in the uncertainty estimation. If ui~0, then the probability of

observation i does not influence the posterior probability. Thus, in

the one-dimensional case, the observation probabilities will be

p(oi Dx)~f 1 if ui~0

N (mo,i,so,i) if ui~1
ð8Þ

Figure 1. Place field sizes, and predicted uncertainty, on an empty rectangular track. The blue dots show the sizes of individual place
fields in bins (one bin equals 1.9 cm). The red lines show the location uncertainty predicted by the Bayesian model - the thin red line (bottom)
represents a trajectory very close to either the top or the bottom border (which means a small uncertainty in the y dimension), and the thick red line
(top) shows a trajectory in the middle of the track, far from the borders (which means a large uncertainty in the y dimension). They account for 85% of
the place fields between them and thus explain most of the variance. (Data from [68]).
doi:10.1371/journal.pone.0089762.g001
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If we insert equation (8) into equation (4) calculating the mean

and uncertainty (standard deviation) of the ‘best guess’ location,

and solve for the standard deviation (see [40]), we get the following

extended expression representing the uncertainty depending on

the distances of a subset of the observations:

ŝsx~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(apzao

XN

i~1

ui

d2
i

)
{1

vuut ð9Þ

Figure 2. Place field sizes, and predicted uncertainty, on a circular track with objects. The blue lines show the smoothed place field sizes
(10-point moving average), normalized to a mean of 0 and variance of 1, and the red lines show the location uncertainty predicted by the Bayesian
model. The minima of the red lines correspond to the black squares marking the positions of the objects on the track, since the location uncertainty is
lowest near to an object and highest when the rat is far from the objects. Pearson’s correlation coefficient between the recorded place field sizes and
the predicted uncertainty was r~0:56 for rat 1 and r~0:55 for rat 2. The proportions of explained variance were R2~0:22 for rat 1 and R2~0:20 for
rat 2. (Data from [42]).
doi:10.1371/journal.pone.0089762.g002
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where i~1, � � � ,N indexes one of N objects, boundaries, or

obstacles. ui can be fitted using e.g. a non-linear optimizer or a

brute-force approach - trying all possibilities - if the number of

obstacles is small enough (in the Results section, we have adopted

the latter approach).

Bayesian inference on the neuronal level: a possible
model

The hypotheses outlined in the Introduction section imply that,

physiologically, the firing fields of place cells should shift and

shrink in a statistically optimal fashion. This might be caused by a

large number of possible mechanisms (see e.g. [43] for some

2
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Figure 3. Predicted and recorded place fields in environment B. The squares represent firing rates at each point of the big square
environment, with hot colors marking high firing rates, and cold colors low firing rates (the plots have been scaled to fit the page - see main text for
the actual proportions of the environments). The model prediction was made based on parameters estimated from the other environments
(environments A, C and D). The overall mean proportion of explained variance was R ~0:60 (Data from [69]).
doi:10.1371/journal.pone.0089762.g003
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proposed implementations of Bayesian inference in brains, and the

Discussion section). We have chosen to implement a different

solution for Bayesian inference in spiking neuronal networks,

based on coincidence detection. We report simulation results of

this neuronal Bayesian inference model in the last subsection of

Results. This neuronal model rests on the following assumptions:

Inference using coincidence detection. A mechanism for

obtaining a Bayesian posterior requires a multiplication of

probability distributions. In a network of spiking neurons, such

multiplication might be implemented by coincidence detection

[44], a mechanism that hippocampal CA1 neurons have been

observed to exhibit [45–47]. This particular implementation of

multiplication is a hypothesis that our proposed conclusion does

not depend on, since multiplication could also be implemented

neuronally in several other ways (e.g. [48]). However, we chose

this one for its simplicity and computational efficiency. Further-

more, a number of neuronal network models capable of

performing Bayesian inference have been proposed before

[43,49–52]; nevertheless, none of these methods are fully

compatible with the anatomical properties of the HEC and the

physiological evidence from place cells (see Discussion). For this

reason we chose to implement a novel solution for Bayesian

inference in spiking neuronal networks, based on coincidence

detection, and inspired by sampling-based approaches to represent

probability distributions [53–55].

The temporal resolution of coincidence detection is in the

right range to approximate multiplication. Bayesian infer-

ence requires multiplication. Multiplication by coincidence detec-

tion only works well within a certain range of temporal resolution

of the coincidence detection. If the temporal resolution is too high,

very few inputs, or even one input, can elicit output spikes, in effect

leading to an addition of the inputs instead of a multiplication.

Too low a temporal resolution on the other hand could lead to

very sparse output spikes, leading to a displacement of the output

firing field and destroying the statistical near-optimality (or, in the

extreme case, to zero output spikes). The coincidence detection

properties of noisy integrate-and-fire neurons have been analysed

in two studies [56,57] (although their analyses are based on a

simple spiking neuron model, recordings by [56] indicate that

these expressions closely model the coincidence detection behav-

iour of biological neurons in vitro). According to [57], the

temporal resolution can be approximated based on the standard

deviation of the fluctuation of the membrane potential s, the

membrane time constant tm and the amplitude w of the

postsynaptic potentials (PSPs) as follows:

T&1:35
s

w
tm ð10Þ

Inserting standard values observed in vivo in area CA1 of the

Hippocampus into equation (10) (tm&18ms [58,59], s&6mV
[60], and w just under the 24+9mV necessary to discharge a

place cell [61]) yields around T&7+3ms. The temporal

resolution of the coincidence detection in hippocampal CA1

neurons has also been measured in vitro, and is of the same order

of magnitude. For example, Jarsky et al. have found that CA1

neuron firing upon perforant path input spikes is strongly

facilitated by synchronous spikes from Schaffer-collateral (SC)

synapses arriving within 5–10 ms, but is otherwise unreliable if no

synchronous SC input is present [45].

This temporal resolution constant T is small enough to

approximate multiplication (see Results), but sufficiently large to

allow enough coincidences to form a place field. Even with very

sparse information, e.g. in rat experiments under total darkness

[62,63] in which the place fields presumably arise mostly from grid

cell input, place cells might receive up to 200–20,000 incoming

spikes per second (based on around 100–1,000 connections

between grid cells and a place cell [4,64,65], and a grid cell firing

rate around 2–20 Hz [16,66]). Given the temporal resolution of

T&7+3ms, this spike rate is sufficient to elicit the empirically

observed CA1 place cell firing rates of around 1–10 Hz (e.g.

[42,67]) in locations where many grid cells firing fields overlap.
Approximating a Bayes-optimal location estimate. Place

cells should approximate a Bayesian posterior according to

hypothesis 2, as expressed in equations (1) and (2). Neuronally,

each border cell could represent a boundary proximity probability

distribution p(oi Dx), if we assume that firing rate distributions are

correlated with probability distributions (cf. hypothesis 1). The

MEC grid cell path integrator could provide the prior location

distribution p(x). Although a single grid cell cannot provide an

unambiguous estimate, having many firing fields, an ensemble of

multiple thresholded grid cell inputs yields a single firing field (or

few firing fields) in small environments, as pointed out by grid cell-

driven place field models [3,4]. This reduction to one or few firing

fields works both with additive inputs, as in most rate-coded neural

network models, and with multiplications of inputs.

Integrate-and-fire spiking neurons are able to approximate the

multiplication of their inputs by making use of coincidence

detection (see Figure 4). Thus, such neurons can represent a

posterior (i.e. a product of probability distributions). If we

represent the spike train of each neuron using a function S(t),
which at a given time t is S(t)~1 if the neuron has fired a spike

within the time interval ½t,tzt), and 0 otherwise (t being the time

discretization parameter of the model, which we set to the

temporal resolution of coincidence detection in place cells - see

Text S2 in the Supporting Information), then the spike train of the

place cell computing the posterior, Spc can be expressed using the

spike trains of its M input neurons, Si:

Spc(t)~H( 1

M

XM
i~1

(Si(t){a)) ð11Þ

Where H(:) is the Heaviside step function, and a~ 0,1ð � is the

proportion of input neurons required to spike within t time in

order to elicit an output spike in the place cell. See Text S2 in the

Supporting Information for the derivation, and for arguments why

this expression approximates multiplication. Using equation (11),

we can express the probability PxA ,xB
that the rat is on a path

between the locations xA and xB during K time intervals of

duration t (represented by TA,B), using the spike train of a place

cell presumably representing the outcome of the Bayesian

inference process Spc, the spike trains representing of N grid cells

Sgc,1:::Sgc,N , and the spike trains of M border cells Sbc,1:::Sbc,M :

PxA,xB
!

1

K

X
t[TA,B

Spc(t) ð12Þ

Spc~H( 1

N

XN

i~1

(Sgc,i(t){a)z
1

M

XM
i~1

(Sbc,i(t){a)) ð13Þ

Equations (12) and (13) describe how Bayesian inference can be

implemented in a spiking neuronal network, approximating the
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Results

Place field sizes on a linear track
Figure 1 shows this prediction of the Bayesian model in a

rectangular environment, and compares it to single-unit record-

ings of the place cells in area CA1 of the hippocampus of ten male

Lister Hooded rats (data from [68]). The rats ran on a narrow

rectangular track with food cups at both ends. These sizes were

also used to generate the model predictions. In the following, x

denotes the distance of the rat from the eastern boundary, y the

Bayesian Cue Integration in Place Cells
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Figure 4. Neuronal implementation of Bayesian inference based on coincidence detection. This simple integrate-and-fire model contains
only three spiking neurons, and shows their spikes over 5 simulated seconds. Each plot shows the spikes (blue dots in bottom rows), as well as the
corresponding instantaneous firing rate or spike density. First row: a simulated grid cell (pre-defined firing rate function), used as the prior. Second
row: simulated border cell (pre-defined firing rate function), used as the observation likelihood. Third row: simulated place cell, representing the
posterior, firing only when all incoming inputs are coincident (i.e. they occur within a small time window). The Gaussian drawn over the mean and
standard deviation of the noise-filtered spikes represents the place field, and approximates the Bayesian optimum. Bottom row: plot of the
membrane potential of the place cell.
doi:10.1371/journal.pone.0089762.g004

posterior probability distributions with spikes of the place cell

which are viewed as samples of that distribution (see Text S2 in the

Supporting Information for the derivation, and for a formulation

of coincidence detection as rejection sampling; and see Figure 4 for

simulation results using integrate-and-fire spiking neurons).

ss~ŝsxŝsy, which are assumed to be independent on

this track (see Methods).

distance from the southern boundary, and L and W the constant

length and width of the environment (L~254cm,W~10cm [68]).

The model was instantiated with the four boundaries of the

environment, and the uncertainty at each point of the track

calculated by multiplying the separately calculated x and y

uncertainties ^

ŝs(x,y)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a{2

o ( 1

x2
z

1

(L{x)2 )
{1

( 1

y2
z

1

(W{y)2 )
{1

s
ð14Þ

The y-axis of Figure 1 shows the total place field area of the

recorded place cells, in bins of 1.9 cm. Under the hypothesis that

uncertainty is correlated with place field size (H2), equation (14)

implies that the biggest place fields should be in the center of the

o in equation (14) was adjusted using a coordinate descent

algorithm. Using this single parameter, the model can explain why

place fields were bigger when closer to the center of the track.

Most of the recorded place field sizes (85%) fall between the

boundaries of the model.

Place field sizes on a circular track with objects
Figure 2 shows the results of the model in a more complex

environment, comparing the sizes of place fields of recorded place

cells of two male Fischer-344 rats in an experiment performed by

Burke et al. [42], in which the rats were running on a circular track

with 106.7 cm diameter and 15 cm width. The track contained a

barrier with food trays on each side to motivate the rats to run

along the track, alternating between clockwise and counter-

clockwise laps. It also contained 8 randomly distributed objects,

and was otherwise featureless. The Bayesian model, equation (7),

was fitted to the recorded data, using N~9 observations (the 8

objects, and the barrier). Uncertainty was calculated in one spatial

dimension, which corresponds to the distance of the rat from the

barrier along the track.

The single-parameter model achieved correlations of rf 1~0:56

for rat 1 and rf 2~0:55 for rat 2 between the smoothed place field

sizes and the fitted model - see Figure 2 (the probabilities of getting

correlations as large as these values by random chance are

negligible: pr1~3 � 10{16 for rat 1 and pr2~2 � 10{17 for rat 2).

The average place field sizes clearly have a non-random structure,

with the minima corresponding to the locations of the 8 objects

and the barrier, as predicted by the Bayesian model (the null

hypothesis of the data being random can be rejected with high

confidence, with p1~0:001,p2~0:008 for the two rats according

to a chi-square goodness-of-fit test of the place field size data

against a normal distribution).

On the other hand, it is plausible that the residual errors, i.e. the

model subtracted from the average place field sizes, are randomly

drawn from a normal distribution, implying that the model

explains a significant part of the non-random structure (the null

hypothesis of the errors being random cannot be rejected

track. Since both the distance from the east boundary and from

the north boundary influence the uncertainty, it also implies that

at each position along the length of the track, there should be

multiple uncertainties, depending on whether the rat is close or far

from the side borders (the south/north border), which is shown by

the two red lines in Figure 1 (the thin red line corresponds to the

rat running close to the south/north border, and the thick red line

to it running in the center, far from those borders). The parameter

a
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according to a chi—square goodness—of—fit test of the residual errors
against a normal distribution, with p1=O.l75,p2=O.ll9 for the
two rats). Some recorded place cells had multiple place fields [42],
in which case the predicted uncertainty was calculated for each
place field separately.

In Figure 2, the x—axis shows the positions of the means
(centroid) of the recorded spikes of each place field, and the y—axis
shows the size of the fields, derived by calculating the standard
deviations of the spike positions. This makes these place field sizes
directly comparable to the uncertainties calculated by equation (7),
provided that the place fields resemble Gaussians, being approx-
imately symmetric, and having the highest spike density around
the mean (centroid). If this was not the case — if the recorded place
fields were not approximately Gaussian -, the spike densities would
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Figure 5. Density of place cell spikes, and predicted uncertainty, on a circular track with objects. The blue lines show the smoothed
(averaged) density of place field spikes, i.e. the number of spikes across all recorded place cells for each centimetre of the track, normalized to a mean
of 0 and variance of 1. The red lines have been obtained by summing Gaussian distributions, one for each place cell, with the means set to the center
of each place field, and the standard deviations set to the location uncertainties (hypothesized to be correlated with place field sizes, see H2) as
above. The exact amplitude of the spike density at each location depends on the place cells firing rate, which is influenced by many non-spatial
factors such as running speed [67], but the shape of the curves is comparable. Pearson’s correlation coefficient between the recorded place field sizes
and the predicted uncertainty was r~0:74 for rat 1 and r~0:86 for rat 2. The proportions of explained variance were R ~0:70

for rat 2. (Data from [42]). doi:10.1371/journal.pone.0089762.g005
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deviate from the prediction of the model. Figure 5 compares the
spike densities of all recorded spikes to the densities predicted by
the model, achieving correlations of V31 =0.74 for rat l and
rs; =O.86 for rat 2 (the probabilities of getting correlations as large
as these values by random chance are negligible: prl :7 >l< l0’37
for rat 1 and Pr2 =1 * 10*“) for rat 2).

Place field sizes after changes in the environment size
Changes in the environment have been shown to influence

place fields. In order to show that the Bayesian model does not
violate the observed effects, and can predict place field size in
novel environments, we have applied it to the data presented in [7]
for evaluating the BVC model, and originally reported in [69].
The data was recorded from six rats foraging for food in four



Figure 6. Place field sizes, and predicted uncertainty, on a circular track with objects, using the extended model. The blue lines show
the smoothed place field sizes (10-point moving average), normalized to a mean of 0 and variance of 1, and the red lines show the location
uncertainty predicted by the extended Bayesian model (which takes into account only a subset of the objects on the track at each point). Pearson’s
correlation coefficient between the recorded place field sizes and the predicted uncertainty was r~0:82 both for rat 1 and rat 2. The proportions of
explained variance were R2~0:66 for rat 1 and R2~0:60 for rat 2. (Data from [42]).
doi:10.1371/journal.pone.0089762.g006
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different environments: a small square of size 61 ><61 cm
(environment A), a large square of l22><l22 cm (environment
B), and a horizontal and vertical rectangle of 61 ><l22 cm and
122 ><6l cm (environments C and D). l2 of the 28 recorded place
fields were discarded from the dataset because they were
asymmetric and did not fit a Gaussian distribution (see Discussion
for possible model extensions). For the remaining 16 place fields,
the parameters of the model were adjusted using the data from two

of the four environments, C and D. The means and standard
deviations of the Gaussians used to represent the place field in the
x and y dimensions were obtained by using a least squares fitting
procedure, and the parameter ao calculated from the known
distances and standard deviations using equation This
equation also allowed calculating the predicted place field size,
i.e. the standard deviation of the representing Gaussian, in the
remaining two environments, by using appropriately sealed
distance relations.



Then, the predicted and recorded place fields were compared at

each point in the environment (see Figure 3). Figure 3 shows the

results for environment B (the large square environments),

achieving a mean proportion of explained variance of

R2
mean~0:60. This fit of the model predictions was compared

against the optimal fit possibly achievable by Gaussian functions,

calculated by fitting Gaussians to each actual firing field in the B

environments using a least square errors procedure. This optimal

fitting procedure yielded R2
optimal~0:68 on average, which is not

statistically different from the model fit (p~0:29 on a paired t-test

over all individual place field R2 values). This shows that the

Bayesian model can make predictions which fit the data almost as

well as optimally fitted Gaussian functions. The difference between

the fit of the model and of this optimal fit is statistically

insignificant.

Place field sizes from subsets of observed objects
The model used so far makes a number of simplifying

assumptions, which yield a very simple mathematical form with

up to two parameters - see equation (7) - and already provides

reasonable predictions of experimental data (see above). However,

the accuracy of the model can be improved by relaxing some of

these assumptions, at the expense of simplicity (see the Discussion

section).

One way to improve the model accuracy is to allow place cells

to be driven not by every single boundary and obstacle in the

immediate environment, but only by a subset of these objects.

Equation (9) allows the calculation of uncertainties taking into

account a subset of observations (see Methods). This extension

introduces N additional model parameters for the N binary

variables ui specifying whether or not observation i is being taken

into account.

Fitting this extended model to the data recorded on the circular

track with objects, significantly increases the model fit - instead of

explained proportions of variance R2~0:22 for rat 1 and

R2~0:20 for rat 2, the extended model achieves R2~0:66 for

rat 1 and R2~0:60 for rat 2 (see Figure 6). However, this extended

model uses N~9 more parameters than the original model (8

objects on the track, plus the barrier with the adjacent food trays).

To take into account the number of parameters relative to the

number of data points, we also compare the adjusted R2 values

(which we denote by R
2
). Instead of R

2
~0:21 for rat 1 and

R
2
~0:19 for rat 2, the extended model yields R

2
~0:62 for rat 1

and R
2
~0:56 for rat 2 after adjustment by the number of

parameters.

Further possible extensions of the model, such as allowing

skewed place fields, will be described in the Discussion section.

Bayesian inference on the neuronal level: a possible
model

As argued above, the sizes of place fields should be dependent

on incoming sensory information, in order to approximate the

statistically optimal location of the animal, and the uncertainty

associated with it. Mathematically, this means calculating a

Bayesian posterior (see Methods). We have already presented

some evidence that place cells might be able to approximate such

Bayesian calculations in the previous sections. Here we extend this

idea by suggesting a tentative model of how these calculations

might be implemented on the neuronal level.

A spiking neuronal network could implement the multiplication

operation required for calculating a Bayesian posterior by making

use of coincidence detection. Figure 4 shows a simple example of a

place cell receiving input from only one grid cell (path integration)

and one border cell (observation). The place cell is modeled using

a current-based integrate-and-fire neuron model [70] (membrane

time constant tm~17ms, synaptic time constant ts~5ms, resting

potential Vr~{80mV , spike threshold Vt~{55mV , synaptic

weights w~26mV ). Synaptic inputs are modeled as spike trains

drawn from non-homogeneous Poisson processes, with firing rates

Figure 7. Errors of coincidence-based multiplication based on a simple integrate-and-fire model. The altitude shows the error (lowest
point: 1%, highest point: 16%, error at CA1 place cell parameters: 5%), and the x and y axes show the dependence of the error on the membrane time
constant t and the spike threshold V respectively. Interestingly, the parameters of some CA1 place cells (t~17ms, V~{54mV ) fall into one of the
local minima of error; and no hippocampal place cell reaches the area of maximum error.
doi:10.1371/journal.pone.0089762.g007
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controlled by Gaussian distributions (see dashed lines in the figure)

to approximate the symmetric firing fields of grid cells and some

border cells. The Brian simulator was used to simulate the place

cell and to plot Figure 4 [71].

In the figure, the place cell only fires when both the grid cell and

the border cell inputs arrive within a small time window. This

leads to a shifting of the place field - the place cell combines both

types of information, and forms the place field at a location

specified by the weighted average of the grid field and border field

location, the weighting depending on the uncertainties (field sizes)

of the inputs. Thus, the place field is located between the grid and

the border field, but closer to the border field because it is

narrower (more accurate).

Figure 4 is intended to illustrate the concept of inference by

coincidence detection. The model relies on the fact that if the

threshold of the output neuron is set high enough to only allow

output spikes on synchronous input spikes, then the output neuron

performs approximate multiplication, as required by Bayesian

inference. The approximation error mainly depends on two

parameters of the output neuron: its membrane time constant, and

its spike threshold voltage. For our purposes, we define the

approximation error as the absolute difference between the

posterior mean estimated by the model, and the mean of the

exact posterior according to Bayes’ rule (the error of the posterior

mean is most relevant for a location model, since the statistically

optimal location estimate is located at the mean of the posterior

distribution under Gaussian assumptions). Figure 7 shows how this

approximation error depends on these two parameters. For an

analytical discussion of the coincidence detection properties of

integrate-and-fire neurons, see [56,57].

Discussion

We have attempted to highlight the usefulness of Bayesian

models in explaining information combination in place cells.

Although such models are too simple to explain all firing

properties, their predictions fit the data quite well given their

simplicity (low numbers of parameters), which is an important

property of good models [72–74]. We have compared such model

predictions to three different datasets recorded from rat place cells

in different environments in the Results section, using firing field

size as a measure of uncertainty. Our results suggest that the

‘Bayesian brain’ hypothesis might be useful in trying to understand

information processing in Hippocampal place cells, not just at a

computational level as has been suggested many times before [8–

11], but also at the neuronal level.

Bayesian spatial cue integration has been investigated before on

the behavioural level. Nardini et al. [75] investigated cue

integration in human children and adults, using a paradigm in

which subjects had to return an object to its original place, either

given only landmark information, only self-motion information, or

both. Their results suggest that adults are able to reduce the

variance (uncertainty) in their response by integrating different

spatial cues in a statistically near-optimal fashion. Cheng et al. [11]

reviewed animal experiments, arguing that the integration of

different spatial cues might be partially explained by Bayes’ rule -

for example, pigeons seem to assign weights to information from

different landmarks using Bayesian principles. Therefore, in

contrast to previous work, this paper significantly extends these

ideas by directly comparing the predictions of Bayesian spatial cue

integration to physiological data recorded from rat place cells, and

argues for the plausibility of this cue integration mechanism on the

neuronal level.

The claim that perception (spatial or otherwise) is based on

Bayesian inference, implemented physically as a neuronal

mechanism, has been criticized for multiple reasons [15]: the lack

of strong physiological evidence in favour of the Bayesian

hypothesis (most existing evidence to date is behavioural, coming

from ‘Bayesian psychophysics’ [15,76]), the arbitrary choice of

prior functions in favour of simplicity in many of these models

(instead of the choice being based on empirical data), and the

ability to explain Bayes-optimal perception in cue integration in

some paradigms without a Bayesian mechanism, by implementing

reinforcement learning.

In this paper we have argued that firing field properties of single

place cells resemble the outcomes of Bayesian inference processes.

Following the advice of [77] we have generated quantitative

experimentally testable predictions, and compared them with

empirical results. Thus, in contrast with the view that ‘Bayesian

models do not provide mechanistic explanations currently, instead they are

predictive instruments’ [15], we provide one of a few existing pieces of

empirical evidence in favour of the idea that the brain might

represent uncertainty at a neuronal level, and that there are some

neuronal level mechanisms approximately conforming to Bayesian

principles. Our results therefore contribute to the ‘current challenge

for these [Bayesian] models [is] to yield good, clear, and testable predictions

at the neural level, a goal that has yet to be satisfactorily reached’ [15].

Bayesian localization
Bayesian cue integration might also play a role in the more

complex problem of maintaining a near-optimal location estimate

through time, despite noise and accumulating errors. In robotics,

one popular family of solutions for maintaining statistically optimal

location estimates is called Bayesian localization (an example

algorithm from this family would be the Kalman filter) [38]. Given

some simplifying assumptions, Bayesian localization can be

performed by the following three computations at each time step,

in order to maintain a statistically optimal, error corrected location

estimate:

1. Path integration. Updates the prior location belief with

(possibly erroneous) movement vectors using a motion model at

each time step.

2. Correction. A Bayesian inference mechanism that corrects

the location belief using observations.

3. Update. Finally, the path integrator’s estimate is updated to

the corrected estimate.

There is ample evidence in literature that the HEC is able to

perform step 1 [17] - grid cells update their firing with each

movement. We have presented evidence in the Results section for

step 2, strongly suggesting that place cells might be able to perform

approximate Bayesian computation. With respect to step 3, there

is anatomical evidence that such an update could happen - place

cells can project back to grid cells and influence their firing [78–

80]. Such back-projections might serve the role of providing

environmental stability for the grids [81], and prevent the

accumulation of error during path integration [3,18,82]. They

are also postulated in a model of grid-cell based error correction,

which shows how the redundant modular coding in the entorhinal

cortex might constitute an exponentially strong population code -

it can ‘produce exponentially small error at asymptotically finite information

rates’ [83] (however, this model does not account for location

correction using observations). The idea of back-projections from

grid cells to place cells is supported by recording evidence showing

that grid cell representations become erroneous, less gridlike, and

expand in field size in novel environments [66]; and recent
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evidence indicating that deactivating the hippocampus extinguish-

es grid fields [84].

Thus, the Hippocampal-Entorhinal Complex might be able to

implement Bayesian localization and maintain approximately

statistically optimal location estimates through time, despite

accumulating errors. Entorhinal grid cells are able to integrate

movement signals [17]. Bayesian cue integration in place cells (see

Results section) might be the mechanism performing the

correction step and then, after near-optimal cue integration, the

corrected location estimate would update grid cells (the neuronal

path integrator) through the place cell back-projections.

Phase resetting presents a plausible mechanism by which to

perform this update step. It has previously been suggested that

error correction in oscillatory interference models of grid cells

might be implemented through phase reset, the resetting of the

phase of intrinsic oscillations in MEC grid cells [81,85,86].

Therefore, when entering a new environment, connections might

form between place cells and grid cells firing simultaneously (i.e.

between cells with coinciding firing fields), to anchor the grid field

representation to environmental features such as boundaries.

These connections could induce a reset of the intrinsic oscillation

phase of the grid cell when the grid field shifts (e.g. due to path

integration errors) [85]. The changed oscillation phase would lead

to a displacement of the grid field back to the center of the place

field, because grid cell firing fields arise from the oscillatory

interference patterns between background theta oscillations and

the intrinsic oscillations in the grid cell in oscillatory interference

models, with the grid cell firing rate being highest when the phases

coincide [87].

There is some recording evidence showing that single incoming

spikes can indeed reset intrinsic oscillation phases in cells of the

entorhinal cortex [88–90]. Because a single postsynaptic potential

suffices, the probability of phase reset occurring depends on the

firing rate(s) of the place cell(s) connected through the back-

projections. Thus, as the animal is running through the place field,

the firing rate within the grid field might gradually adapt to the

firing rate of the place field, and the fields would become aligned,

completing the update step.

Possible extensions
There are some properties of place fields which the model

presented here, in its simplest form, while not inconsistent with,

cannot account for. The basic uncertainty estimation, equation (7),

does not account for place cells driven by only a subset of the

objects in the environment, instead of all of them, however, some

place fields have been observed to be controlled by specific

landmarks [91]. Equation (9) makes it possible to parametrize

which subset of the object distances are taken into account for the

uncertainty calculation, yielding a significantly better model-data

fit on the track with multiple objects (see Results).

Although the equations used in the Results section use a single

Gaussian distribution to model a place field, this model can be

used to model place cells with multiple place fields in a

straightforward fashion, by calculating a separate uncertainty

value for each place field using the respective distances of objects

from the place field centroids. Thus, multiple uncertainty values

can be associated with each place cell, one for each place field - as

in Figure 2 for example, in which many of the plotted place fields

belong to multi-field place cells (see [42] for the distribution of

single-field and multi-field place cells in this dataset).

Further phenomena not explained by the simple model include

asymmetric place fields that are frequently found in area CA1 of

the hippocampus, and the observation that place field sizes seem to

increase along the dorso-ventral axis of the hippocampus [67].

Asymmetric place fields could potentially be modelled using

skewed probability distributions such as the Skew-Normal

Distribution [92] as observation likelihoods instead of Gaussians,

using a similar approach to the one described in the Methods

section. The grid cell input to a place cell is usually symmetric, but

the firing fields of border-related cells can be skewed [22,23],

which might give rise to asymmetric place fields. The skewness

parameter of an asymmetric probability distribution (such as the

Skew-Normal Distribution) in such an extended model might

increase as a function of familiarity with the environment (time

spent in the same environment), in order to model the experience-

dependent asymmetry of some CA1 place fields [93]. The mean

and variance of such a distribution could be estimated similarly to

the approach proposed in the Methods section. Future work, and

experimental data from place cells recorded over extended periods

of time, will be needed to verify how well such an asymmetric

model could account for skewed place fields.

It is interesting to note, with respect to the fact that the place

field sizes increase along the dorso-ventral hippocampal axis, that

the same field size increase has been observed in grid cells in the

medial entorhinal cortex [94]. Since grid cells are hypothesized to

play a role in driving place cell firing, both in our model and in

previous models [3,4], this might account for the place field size

gradient. In an extended model taking into account the spatial

configuration of the hippocampal-entorhinal complex, if the dorsal

grid cells are adjusted to have small firing fields and the ventral

ones large firing fields (50 cm–3 m, see [94]), this will lead to a

similar gradient in the resultant place fields, given that the grid

cells at least partially drive the firing of the place cells. The role

played by boundary-related inputs would mean that not every

place field would fit this dorso-ventral size gradient, but on average

a field size gradient could be observed in such a model.

Related work
The Boundary Vector Cell model [24] of place cell firing also

explains place fields in terms of geometric relations to environment

features, although it does not suggest statistical near-optimality and

does not make use of Bayesian cue integration. The objective fit of

the simple model presented in this paper is not as good as the fit

achieved by the Boundary Vector Cell model ([7] describes the fit

of the BVC model to the data in figure 3). The BVC model could,

in principle, also be fitted to the first two datasets presented in the

Results section, but would require the adjustment of a higher

number of parameters than there are data points and thus would

not have a unique solution (Hartley et al. [7] simulated 2–4 inputs

per place cell, requiring up to 7 parameters to be adjusted for each

place cell; and a few additional global parameters - over 700 fitting

parameters for the data in Figure 2).

The model presented here serves a different purpose; not to

present a more accurate model of place fields, but rather to

highlight that the information integration in place cells approx-

imately resembles simple Bayesian computation. Our results

suggest that predictions resembling in-vivo recorded place field

data can be made based on a single underlying principle: the statistically

optimal combination of information. Because of its simplicity, this model

cannot fully explain experimental data, and does not achieve a fit

as good as previously suggested models such as the Boundary

Vector Cell model [2,7,24] (since it only uses a single global

parameter for the results illustrated in Figures 1, 2 and 3). It has

been argued that in addition to quantitative fit, simplicity and

parsimony are also important and desirable characteristics for

potentially valid computational models [72–74]. Thus, we believe

it is important to consider not only models that are capable of

fitting data very well, but also models that offer simple
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explanations, and we have described such a model, using a

Bayesian framework and a single parameter.

It has been suggested earlier [29] that sensory information

might be used to correct path integration error. Previous work

building on this idea can be categorized into high-level models,

suggesting correction mechanisms but unconcerned with the

details of neuronal implementation, and neuronal-level models.

High-level models of hippocampal error correction have

proposed a Bayesian information integration mechanism before

[11–14]. Cheung et al. [14] show that featureless boundaries alone

are insufficient for unambiguous localization, and propose a

similar model of Bayesian localization to the one outlined here,

based on the implementation of a particle filter, and replicate some

experimental results on place and grid field stability using their

high-level model. However, they do not account for single cell

firing field data, and they do not suggest how the particle filter

might be implemented in the brain. MacNeilage et al. [13] suggest

Bayesian cue integration to estimate spatial orientation under

uncertainty, suggesting Kalman filters (which use unimodal

Gaussian probability distributions) or, alternatively, particle filters

(which are capable of dealing with multimodal and non-Gaussian

probability distributions) as the mechanistic implementation. Pfuhl

et al. [12] also hypothesize spatial information integration to be

Bayesian, choosing Kalman filters as their implementation.

Finally, Cheng et al. [11] propose that spatial information is

integrated in a Bayesian fashion, without suggesting a formal

model or a neuronal implementation, and provide some behav-

ioural evidence for this claim.

Kalman filters are possible to implement on biologically

plausible attractor networks [51], although they have the

disadvantage of being unable to deal with multimodal, non-

Gaussian distributions. Taking a different approach, Samu et al.

[82] have used a recurrently interconnected attractor network to

correct path integration errors, using sensory information via

hippocampal back-projections. Their model, like most attractor-

based path integration models, relies on recurrent interconnections

(which area CA1 of the hippocampus seems to lack [3]). Extending

their ideas, Fox and Prescott [95] have attempted to map the

hippocampal formation onto a temporal restricted Boltzmann

machine (and argue that inference in their model resembles

particle filtering), also modelling on a functional level but trying to

adhere more closely to anatomical connectivity. However, like the

previously mentioned concrete computational models, they do not

model empirical data to substantiate their model. Using oscillatory

interference theory instead of an attractor model as their

theoretical basis, Monaco et al. [96] also use cue-driven feedback

to correct location errors and to handle cue conflicts. They also

reproduce partial remapping in an experiment, strengthening the

mechanism the model uses to resolve cue conflicts. Cue-driven

location correction is also employed in the model proposed by

Sheynikhovich et al. [97], in the form of connections between view

cells and grid cells, weighted using Hebbian learning.

Unlike many of these models, apart from presenting a high-level

model of Bayesian cue integration, we have also attempted to

suggest a tentative neuronal mechanism that might underly the

implementation of approximate inference. Starting from mathe-

matical theory, a number of implementations of Bayesian

inference have already been proposed (e.g. [43,49–52]), although

none known to the authors in the context of HEC error correction.

We believe the inference mechanism described in the Results

section offers a useful contribution, because most previously

published spiking neuron inference mechanisms predict anatom-

ical and firing properties inconsistent with some empirical

observations if applied to place cells. For example, the distribution

population coding method [98] assumes prespecific tuning

functions and a sophisticated decoding operation with unclear

neuronal implementation. Inference mechanisms based on a log

probability population code [52] have more plausible decoding

schemes, but require recurrent connectivity and global recurrent

inhibition, which have only been observed in CA3, not in CA1

place cells [99], in contrast to physiological data from CA1

suggestive of Bayesian inference (see Results section). In addition,

they assume specific weight matrices for statistical optimality -

which could be learned in principle, but would require a non-

Hebbian learning rule. Finally, probabilistic population codes

(PPC) have been widely used in modelling inference [50], recently

also supported by physiological data [100]. However, PPCs have

no clear way to implement learning [101], and they also require

recurrent connections [50]. Furthermore, the standard PPC

inference scheme assumes Poisson-like variability to allow simple

addition to implement inference [43,50], which implies a direct

relationship between the absolute firing rates of neurons in a PPC

and the uncertainty (standard deviation) of the encoded distribu-

tion - a relationship predicted by most inference schemes.

However, it has been observed that place cell firing rates increase

with the animals movement speed [67] - if place cells used a PPC

with Poisson variability, or any other probabilistic encoding

scheme predicting such a relationship, this would imply that the

faster they would run, the more certain they would become of their

location (location uncertainty would decrease with increasing

running speed), which is counter-intuitive and contradicts the

frequently observed trade-off between speed and accuracy [102].

The model we propose has its own shortcomings, but is simple

and does not depend on specific weight matrices or variability

distributions. Our aim was to show that even without additional

assumptions regarding connectivity, weights, or learning, the

anatomy of the Hippocampal-Entorhinal Complex might be able

to implement approximate Bayesian inference. Although we were

unable to substantiate this tentative model with physiological data

as of yet, we hope that the reported results will encourage future

research addressing the often sceptically regarded [6] mechanistic

‘Bayesian brain’.
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Abstract

It has been suggested that the map-like representations that support human spatial memory are frag-
mented into sub-maps with local reference frames, rather than being unitary and global. However, the
principles underlying the proposed structure of these ‘cognitive maps’ are not well understood.

We propose that the structure of the representations of navigation space arises from clustering, i.e. from
a process that groups together objects that are close in a given psychological space, and we present evidence
for this claim based on participants’ long-term spatial memories regarding buildings in real-world, as well
as virtual reality, environments. We compare plausible dimensions of this psychological space, including
spatial distance, visual similarity and functional similarity, and report strong correlations between these
dimensions and the grouping probability in participants’ spatial map structures, which empirically support
the clustering hypothesis.

In addition, we also present the first formal predictive model of human navigation-scale spatial repre-
sentation structure, based on the Bayesian cognition paradigm, and show that this probabilistic model of
clustering, when provided with information regarding psychological spaces, learned from subjects, allows
the prediction of their cognitive map structures for the first time.

Keywords:
Spatial representations, cognitive maps, hierarchical cognitive maps, spatial structure, spatial memory,
computational cognitive modeling

1. Introduction

There has been considerable research on spatial representations facilitating navigation since Tolman
coined the term ’cognitive map’ (Tolman, 1948). Since then, the neural bases of such allocentric (world-
centered) representations of space have been identified in rats (O’Keefe & Nadel, 1978; McNaughton et al.,
2006) and humans (Ekstrom et al., 2003; Barry et al., 2006) and have been shown to play a vital role in
representing locations within the environment in long-term memory. Instead of learning a single spatial map
with a global reference frame, as proposed originally (Tolman, 1948; O’Keefe & Nadel, 1978), humans (as
well as some non-human animals) seem to form structured spatial maps, consisting of multiple ‘sub-maps’,
i.e. multiple representations containing spatial information about sub-sets of objects in the environment,
with separate local frames of reference.

Behavioural evidence has suggested that human spatial maps are structured, and has been interpreted as
comprising multi-level hierarchies (Hirtle & Jonides, 1985; McNamara, 1986; McNamara et al., 1989; Holding,
1994; Wiener & Mallot, 2003), or at least as having multiple local reference frames (Meilinger et al., 2014;
Greenauer & Waller, 2010). These hierarchies, extracted from recall sequences, can be observed even in the
case of randomly distributed objects with no boundaries (McNamara et al., 1989), with participants’ response
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times and accuracies being affected by this structure (subjects overestimated distances between objects
on different branches of the hierarchy and underestimated distances within branches, and showed shorter
response times for within-branch judgements). Further evidence for the existence of multiple representations
in different spatial reference frames (Greenauer & Waller, 2010; Shelton & McNamara, 2001; Meilinger et al.,
2014) has been derived from the accuracies of judgements of relative direction, which are heavily affected
by subjects’ frames of reference.

In addition to behavioural data, there is also strong neuroscientific evidence for hierarchical spatial rep-
resentations (Brun et al., 2008; Kjelstrup et al., 2008), and for fragmentation into sub-maps (Derdikman &
Moser, 2010) in mammalian brains. Finally, organized and structured maps (instead of a single represen-
tation) are consistent with ‘chunking’ long-term memory (Gobet et al., 2001) and with hierarchical models
of cognition (Cohen, 2000), and have multiple information processing advantages, including the increased
speed and efficiency of retrieval search, and economical storage.

The rate at which results about structured cognitive maps (navigation-space allocentric representations)
in humans have been published has declined since the pioneering work of the eighties and nineties, partly
because of some controversy surrounding the term ‘cognitive map’ 1. The methodological difficulties plaguing
behavioural research into the organization of cognitive maps are additional likely reasons for this decline.
Unfortunately, humans do not have introspective insight into the structure of their cognitive maps. Thus,
map structure can only be inferred indirectly, with a small set of possible behavioural paradigms such as
those tapping recall patterns or priming effects, which are prone to noise (see Section 4, General Discussion,
for a comparison of advantages and disadvantages of different methods).

Although map structure is not introspectively accessible nor immediately apparent, it does play an
important role in spatial cognition. It has been shown in experiments involving priming, distance and
angle estimations, and sketch maps, that the speed and accuracy of subjects at various spatially relevant
tasks are significantly influenced by how they represent space (Hirtle & Jonides, 1985; McNamara et al.,
1989; Han & Becker, 2014; Hommel et al., 2000). In addition to helping us understand the influence
on cognitive performance, a model of cognitive map structure could facilitate several neighbouring fields,
including human-robot interaction (allowing robots to use human-like spatial concepts), artificial intelligence
(use insights from human memory to improve artificial memory), and geographic information science (present
spatial information in a more easily comprehensible and memorable fashion) - see Section 4.1.

Despite the importance of this question, and perhaps because of the above-mentioned difficulties, no
formal theories or models concerning the organizational principles of cognitive maps, able to account for
empirical data, have been published since cognitive maps were first proposed to be structured. Little
progress has been made on explaining how these representations might be structured in non-trivial, open
environments. Multiple features influencing map structure have been suggested, including boundaries in the
environment (Wang & Spelke, 2002; Barry et al., 2006), spatial distance and familiarity (Hirtle & Jonides,
1985), action-based and perception-based similarity (Hommel et al., 2000; Hurts, 2008), and functional /
semantic similarity (Holding, 1994). However, to the authors’ best knowledge, these influences have never
been compared based on behavioural data.

A few formal models of map structure do exist - which are predominantly empirically untested -, e.g.
the graph-based model by (Thomas & Donikian, 2007) for outdoor virtual reality environments, or based on
predicate logic (Reineking et al., 2008), for indoor environments (neither of these have been evaluated against
human data); as well as more neuronally plausible but functionally simpler models of place cells such as (Sato
& Yamaguchi, 2009) (also empirically untested), or the model by (Byrne et al., 2007) (which can account
for lesion effects in humans, but not for large-scale cognitive map structure). Voicu (2003) has published

1Some researchers have argued that humans depend on landmark-based instead of map-based navigation whenever they
can (Foo et al., 2005), and that most animal behaviour can be explained without the cognitive map hypothesis (Bennett,
1996). However, the well-established body of neuroscientific evidence for dedicated brain regions containing allocentric spatial
representations (Moser et al., 2008; Derdikman & Moser, 2010) - both in human and non-human mammals -, together with the
ability of human subjects to plan complex novel shortcuts or detours or produce sketch maps, render the idea of allocentric,
map-like representations - at least in humans - difficult to dismiss. On the other hand, ‘cognitive maps’ might well be different
from geographical maps in several respects, including being limited in scope, detail, and accuracy, being dynamic, and possibly
using metrics that are not (or not exclusively) Euclidean (Spelke et al., 2010; Jeffery, 2015).
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the modelling work closest in spirit to the predictive models reported below, utilizing self-organizing maps
to model hierarchical cognitive map structure, and reporting that on average, the model exhibits similar
distance estimation error patterns to the estimation biases (averaged over all subjects) reported by Hirtle
& Jonides (1985). However, this model has not been compared to individual subject maps; and is unable to
account for per-subject data in Hirtle’s dataset, since it uses only Euclidean spatial distance and no other
features (whereas many of Hirtle’s subjects do not cluster exclusively based on spatial distance). To date,
no empirically tested, formally defined model exists that would be able to predict, or even quantitatively
explain, the structure of the individual spatial maps constructed by humans in unconstrained large-scale
environments; and the features of the psychological spaces 2 underlying such a model have not yet been
explored empirically.

Formulating models and testable hypotheses precisely and unambiguously, is important for efficiently
driving research, especially in interdisciplinary areas such as spatial memory (which is of interest in psychol-
ogy, neuroscience, and artificial intelligence, among other fields). Computational cognitive models are well
suited to this challenge as such unambiguous formal descriptions, and provide a common language across
disciplines, as well as the additional advantage of very fast prediction generation and hypothesis testing
(once the data has been collected, such models can be rapidly run and verified on computers). Thus, they
play an important role in the cognitive science of spatial memory, helping to integrate findings, to generate,
define, formalize and test hypotheses, and to guide research.

In order to develop and validate a computational model of cognitive map structure, it is necessary -
but not sufficient - to tackle the methodological difficulties associated with indirectly inferring consciously
inaccessible spatial representation structure from noisy data. In addition, there are also computational
challenges. Just like brains can be said to create object representations based on perceived and remembered
properties of objects, a computational cognitive model also needs such representations, capturing relevant
features. Furthermore, a method is needed that helps to decide which representations should be grouped
together on sub-maps. While many low-level features of these representations can be neglected for simplicity
in a model on Marr’s computational level (Marr & Poggio, 1976), an appropriate metric3 for capturing
similarities between objects is crucially important for exploring how object representations are grouped
together onto sub-maps by the brain. Various features, with different levels of importance, can influence
whether objects belong together; and defining a metric is a way to formally account for these ‘feature
importances’ (Figure 1). Although the entorhinal cortex has been argued to contain two-dimensional metric
grids analogous to graph paper (Jeffery & Burgess, 2006), recent evidence implies the brain’s distance metric
to be locally distorted (Jeffery, 2015), non-Euclidean (Spelke et al., 2010), and dependent on the above-
mentioned features of familiarity, functional similarity, and perceptual similarity (Hommel et al., 2000; Hurts,
2008; Holding, 1994). These features might not be equally important, and their relative importance might
not be the same across individuals.

Thus, finding a metric under which objects grouped together by human subjects are ‘closer’, or more
similar, than those not grouped together, is vital for modelling an individual’s spatial representation struc-
ture. Using this metric, a model can generate predictions regarding which group or sub-map a new object
might belong to. Alternatively, objects can be represented in a metric space (which models a subject’s
psychological space), spanned by relevant features constituting the axes of that space, weighted by their
importance. In fact, learning a projection into such a space, in which objects which belong together have
a smaller Euclidean distance than those which do not, and learning a metric under which this grouping

2By a ‘psychological space’ we mean a metric space within which the similarities of objects can be represented as distances
between points in that space; consistent with the pioneering models of stimulus identification (Shepard, 1957) or categorization
(Nosofsky, 1986) or, most recently, conceptual spaces (Gärdenfors, 2004). By a ‘feature’ of the psychological space, we mean
one of the dimensions of this space, which allows measuring similarity along a single aspect, such as the functional similarity
of buildings.

3A metric (or distance function) is a function that defines a non-negative ‘distance’ between pairs of objects. Two well-
known examples include the Euclidean (geodesic) distance, and the taxicab (Manhattan) distance. In this paper, we model the
dissimilarity between two building representations by means of their ‘distance’ according to a learned metric, which operates
on multiple features including but not limited to spatial position (with a distance/dissimilarity value of 0 meaning that the
representations are equivalent).
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Figure 1: Formalizing relative feature importances for grouping objects. Panel A: A subject might group (represent) the two
coffee shops together (buildings 3 and 4), even if they are spatially farther apart from each other than to other houses; i.e.
(3) and (4) are psychologically closer (more similar) for that individual than (2) and (4). The idea of some features being
more important than others when grouping objects can be formally captured either by defining a metric dMetric reflecting the
subject’s psychological similarity by weighting features appropriately (panel B), or by projecting objects into a feature space
(psychological space) spanned by weighted features, in which the Euclidean distances dEuclid are consistent with the subjects’
psychological similarity (panel C). The central challenge for a predictive model of spatial groupings is learning these feature
importances or ‘weights’ which parametrize dMetric (or the projection function A) from subjects. Representing subjects’
psychological similarities by applying these weights in a distance metric is equivalent in outcome to representing them by
functions projecting into a weighted ‘psychological space’ (similar objects will appear closer under the learned metric / in the
learned space).

relationships hold, are two views on the same problem, and the solutions are mathematically analogous (see
Figure 1 for an informal and footnote 21 in Section 3.5.1 for a formal argument). In both cases, the solution
involves learning parameters corresponding to the relative importances of the features for a given subject.
Although traditionally, cognitive psychology has mostly used the former approach, using multidimensional
scaling (MDS) to project into a psychological space correctly reflecting similarities (Shepard, 1957), this
method is not applicable in our case on its own (the reasons for this are outlined in Section 2.4).

This paper aims to tackle the above-mentioned challenges associated with exploring the structure of
spatial representations, and to take a first step towards establishing a formal and empirically substantiated
model of this structure. Our core hypothesis is that the structure of spatial representations in humans
arises from a process of clustering of the represented objects, in a psychological space characterised
by multiple relevant information types (features) including the ones mentioned above. Clustering extracts
groups or clusters by assuming that objects belonging to the same group (in our case, sub-map) are closer
to each other within psychological space than objects belonging to different groups (sub-maps). The charac-
teristics of the psychological space within which this clustering takes place, i.e. which features are relevant
and how important they are, has to be learned from participants’ responses. The main contributions of this
paper are as follows.

1. We present evidence for the clustering hypothesis both in virtual reality and in real-world environments,
and compare the influence of several information types (features) on cognitive map structure, and the
stabilities of these feature influences across environments and subjects.

2. We show that the structure of spatial representations, far from being a confounding effect of the recall
process or a minor mechanistic detail of memory, has an important role in, and influence on, multiple
cognitive phenomena, including (but not limited to) planning, distance estimation, memory accuracy,
and response times.

3. We propose and evaluate three computational methods to learn models of subject-specific psychological
spaces (either in the form of weighted feature spaces or as distance metrics), even if only small amounts
of training data are available

4. We present the first (to our best knowledge) quantitative model able to predict individual cognitive
map structures in navigation space, and evidence supporting it.

We only use a few simple types of features for modelling and prediction. Nevertheless, and despite the
large amounts of unreliability and noise both in these features and in the participant responses, we show
that spatial map structures can be predicted for human subjects, in a large number of real and virtual
environments. We adopt the behavioural methodology used by (Hirtle & Jonides, 1985; McNamara et al.,
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1989; McNamara, 1986; Holding, 1994) among others, which infers subjects’ representation structure based
on recall sequences, and assumes that objects recalled together belong to the same sub-map. Despite of some
shortcomings (see Sections 2.1 and 4), the clear and significant influence of the resulting map structures on
several kinds of cognitive phenomena (as well as its prior success at showing the influence of hierarchical
cognitive maps) lend credence to this method.

Finally, we also make freely available as a web application the experiment software developed to inves-
tigate cognitive map structure, at https://github.com/tmadl/Cognitive-Map-Structure-Experiment,
with the aim to encourage future work on this important but neglected research area.

2. Experimental paradigm

We investigated the structure of spatial representations in navigation space in three experiments. All of
the experiments were concerned with the representations of buildings and their relation to each other. In
Experiments 1 and 3, subjects recalled real-world buildings that they were already highly familiar with (see
Figure 2). In Experiment 2, subjects were presented with three-dimensional virtual reality environments
- containing buildings with automatically generated properties - which they had to memorize prior to the
recall task from which the representation structure was inferred (see Figure 3).

Figure 2: A part of the real-world memories experiment interface of Experiments 1 and 3, with the sketch map question for
verifying that subjects have indeed formed allocentric cognitive maps (top), and the recall sequence question requiring them to
recall every single building name multiple times (bottom). During this recall question the labelled sketch map was not visible
to subjects.
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Figure 3: A part of the virtual reality experiment interface of Experiment 2 (the recall sequence interface was equivalent to the
real-world experiments; see Figure 2)

2.1. Extraction of spatial representation structure

To extract the structure of spatial representations, we use a variant of ordered tree analysis on subjects’
recall sequences, a behavioural methodology used by (Hirtle & Jonides, 1985; McNamara et al., 1989;
McNamara, 1986; Holding, 1994) among others for extracting hierarchies in spatial representations, and by
(Naveh-Benjamin et al., 1986; Reitman & Rueter, 1980) for verbal stimuli. The core assumption behind
this methodology is that objects recalled together belong to the same representation; i.e. that on the whole,
subjects recall every object within a representation (or sub-map) before moving on to the next representation
(see Figure 4). Tree analysis operates on a set of recall sequences (with each sequence consisting of all object
names, recalled with a particular ordering - usually different from the other recall sequences -, as exemplified
in Figure 2A). Variety among these recall sequences is encouraged by cueing subjects with the object they
are required to start with (and only uncued parts of the sequence are analysed to avoid the interference of
the cue) (Hirtle & Jonides, 1985).

To briefly summarize the collection of these recall sequences (for details, see Section 3.2): in each trial,
subjects were first asked to pick a few buildings (5 or 8) within walking distance of each other, which they
were very familiar with, and where they knew how to walk from any one building to any other. Subsequently,
they were asked to recall the complete list (i.e. recall sequence) of their chosen buildings, starting with a
cue building (except for two interspersed uncued trials), multiple times. If building names were missing or
incorrect, subjects were prompted again, until they got all of them right. Thus, the ordering within the
individual sequences was their only variable aspect.

After obtaining the recall sequences, for each subject, the algorithm simply iterates through all possible
combinations of subsets of object names in each recall sequence, finds those subsets which consistently appear
together in all sequences (regardless of order), and constructs a hierarchy based on containment relationships
from the subsets of items occurring together. The original algorithm also extracts directionality information
for each group (whether the items within that group have always been recalled using a consistent ordering).
We do not use the order information in the recall sequences in this work (see Supplementary Information for
the algorithm we have used). Figure 4 A shows example abbreviated recall sequences, and the resulting tree
structure, where each branch or sub-map consists of items which always occur together in the sequences.
Unambiguous sub-map memberships are obtained at the level just above the leaf nodes, defining sub-maps
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as elementary sets of co-occurring items, i.e. those which do not themselves contain further co-occurring
items. This procedure partitions buildings into one or two sub-maps in Experiments 1, 2 and 3A, and up
to four sub-maps in Experiment 3B.

Since this tree analysis algorithm requires buildings to be recalled together in every single recall sequence
in order to infer subjects’ sub-maps, it is very sensitive to individual inconsistencies that may result from
lapses of attention, task interruptions, and other kinds of noise within participant response (see Section 4 for
a discussion and comparison with other approaches of inferring cognitive map structure). To mitigate this,
we have eliminated ‘outlier’ recall sequences, defined as sequences which would have statistically significantly
altered the structure if they were included (whereas all others would not). As proposed in previous work
on hierarchical cognitive maps (Hirtle & Jonides, 1985; McNamara, 1986; McNamara et al., 1989), we used
jackknifing to eliminate outliers. For each sequence, this procedure calculates how the inferred tree structure
would change if the sequence were omitted. Trees were quantified using two statistics, tree height and log-
cardinality (the logarithm of the number of possible recall sequences consistent with that tree). These
statistics were calculated for the tree resulting from all sequences of one trial, as well as for all trees that
would result from possible sequence omissions (i.e. if only sequences excluding the omitted one had been
entered by the participant). If any of the sequence omissions lead to a statistically significant change in
the tree statistics, at a significance level of α = 0.054, then that sequence was deemed an outlier and was
omitted, and the tree resulting from the other sequences of that trial was used for further analysis. All
sequences except for outliers were consistent with the same tree structure. Thus, outlier sequences, which
significantly changed the tree structure, were likely to arise from the above-mentioned sources of noise (lapses
of attention, interruptions, etc.). The outlier sequences detected and removed by the jackknifing procedure
comprised 8.5% in Experiment 1, 10.0% in Experiment 2 and 9.5% in Experiment 3, corresponding to less
than one omission per subject (across the 7 recall sequences produced per subject and trial).

Figure 4: The recall sequence-based method used to extract cognitive map structure. A: Example recall sequences of one
of the participants of Experiment 3. Each building was cued once, with two uncued recall trials interspersed (full building
names abbreviated by their first character). B: Hierarchical tree structures were constructed by tree analysis, based on the
assumption that buildings always recalled together belong to the same sub-map. C: Geographic map of the buildings recalled
by this participant. Sub-maps shown in colour, according to the extracted structure.

To simplify the analysis, we subsequently extract the elementary sub-maps (those not containing smaller
sub-maps) from the constructed tree - this allows us to model sub-maps, as opposed to full hierarchies.
These elementary sub-maps must contain at least two buildings. If a sub-map only contains a single object,
then this object is excluded from subsequent analysis. The main reason being that our hypothesis implies
sub-maps to be clusters or groups of objects; however, there is no way to verify the plausibility of a single-
object cluster (as opposed to clusters containing multiple buildings, for which performance consequences
such as between/within-cluster distance biases, priming effects etc. can be investigated - see Section 3.2 for
evidence). A further reason for the exclusion of single-object sub-maps is that they were likely to actually
be parts of bigger sub-maps in subjects’ spatial memories, together with additional buildings not captured

4We used a less conservative significance criterion than prior work due to the simpler structures and smaller numbers of
objects used (using the extremely conservative significance level of α = 0.001 used in the prior work cited above would have
led to zero outliers being detected - presumably incorrectly, since it is unlikely that not a single participant would have had
any interruptions or lapses of attention).

7



due to the necessarily limited number of recalled items per trial in our experiments. The exclusion of these
single buildings did not have an impact on the plausibility of our claims, since two sub-maps containing pairs
of buildings suffice for comparing within sub-map and across sub-map estimations in order to investigate
whether map structure has an effect on spatial cognition (see Section 3.2. Experiment 3B collected map
structures with eight buildings and up to four sub-maps to show that the model is not limited to two).

A final difference between our methodology and prior uses of the recall order paradigm is the repetition
with several different geographic environments for each subject in Experiment 3. Repeatedly extracting
cognitive map structures from the same participants is not only interesting, e.g. to compare the variability
of the features in subjects’ psychological spaces, but also of vital importance for producing and validating
a predictive model of the structure of spatial representations. Given the large inter-subject variability in
terms of features and feature importances influencing map structure, parametrizing such a predictive model
necessitates gathering multiple different cognitive map structures from separate environments (and not just
one structure), both for training the model, and for subsequently testing it. The main differences between
a repeated and a single-trial paradigm include possible effects of fatigue due to the increased length of
experiments, as well as declining accuracy of representations towards the later stages (participants started
struggling to cue readily available buildings which they could accurately draw on a map beyond 20 buildings,
as evidenced by much slower progress, higher error rates, and much higher rate of participants abandoning
the experiment as compared to Experiment 1 which used single trials).

An attempt to mitigate these effects - as well as practical limitations - motivated the decision to use
a smaller number of buildings (five in Experiments 1 and 2, five and eight in 3 A and B) compared to
the single-trial setup of (Hirtle & Jonides, 1985; McNamara et al., 1989), who used 32 and 28 objects,
respectively. Using their dozens buildings for each of the five or three map structures of Experiment 3 would
have required participants to recall (and accurately localize) around one hundred buildings or more - as well
as judging all of their pairwise similarities, the number of which increases quadratically with the number of
buildings (in the case of 32 buildings, they would amount to 496 similarity judgements each for visual and
functional similarities, and for each trial, which is nowhere near feasible).

2.2. Experimental platforms and participants

Participants in two of the three Experiments (1 and 3) were recruited from the online survey website
Amazon Mechanical Turk (MTurk)5. Multiple psychological findings have been replicated before, using
subjects from MTurk (Crump et al., 2013), showing the breadth of this platform for psychological exper-
imentation. MTurk offers a participant pool that is significantly more diverse than samples of university
students, containing subjects from many countries worldwide and of different age groups; as well being
several orders of magnitude larger than most universities’ subject pools. But the most important advantage
offered by this platform lay in facilitating the collection of information about spatial representations of many,
very different geographic environments. Such variety is critical for two main reasons:

• To facilitate generalizable observations (for example, insights from inflexibly planned city areas such
as the grid layout of Manhattan might not have been generalizable to other street layouts), and

• To avoid local biases (for example, using exclusively local maps in the same city for each partici-
pant might have led to conclusions about the spatial structure of the local city, reflected in subjects’
representations, as opposed to insights into the way subjects structure space in general).

Our objective of collecting cognitive map structures from a large variety of different geographical en-
vironments was indeed successful - we collected data and analysed spatial representations from several
environments within 149 different cities across multiple continents (see Figure 5 - a list of these cities can
be found in the Supplementary Information).

5https://www.mturk.com
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Figure 5: Overview over the 149 cities in which participants’ spatial memory structures were extracted (and predicted by the
computational model) in the real-world experiments (full list in Supplementary Information)

2.3. Exclusion of participant maps not significantly better than random chance

Throughout this paper, we have only analysed participants’ data if their sketch maps were significantly
better than random chance, in order to avoid false conclusions about cognitive maps being made on the
basis of non-allocentric representations. Since route knowledge suffices for navigating between buildings,
participants might have lacked survey knowledge about some of the buildings in these experiments. To
rule out participant data not showing evidence of allocentric cognitive maps, we first performed a test of
participants’ sketch maps against randomness, before carrying out the subsequent analyses described in
Section 3.

We compared the sum of squared errors (SSE) calculated by subtracting the positions of buildings on
participants’ sketch maps from those on the correct geographical map (obtained from Google Maps), with
the SSEs of 10,000 randomly generated maps containing 5 buildings against the correct map. Since subjects’
sketch maps were produced on empty surfaces without any position, orientation or scale cues, as seen in
Figure 2, they were first aligned (translated, rotated, and scaled) with the correct map using Procrustes
analysis (Gower, 1975) without reflection. The randomly generated maps were also aligned in the same
fashion. The distribution of the SSEs of 10,000 6 Procrustes-aligned random maps was then used to test
whether subject maps were better than random. Specifically, subject SSEs were tested against the null
hypothesis that they were drawn from the distribution of uniformly random map SSEs. Two different
significance tests were applied at α = 0.05 significance level, and found to largely agree (in all but 3% of
the cases in Experiment 1, 1.3% in Exp. 2 and 4% in Exp. 3): a Z-test assuming normal distributions of
SSEs, and a non-parametric Bootstrap hypothesis test (MacKinnon, 2009), which requires subject maps to
be better than a proportion of 1− α of the random maps.

Because the former test makes the assumption of normally distributed data, which is incorrect for the
vast majority of distributions of random map SSEs according to Shapiro-Wilk tests, we use the latter, non-
parametric hypothesis testing method throughout this paper to test participant maps against randomness.

2.4. Data analysis

Subject data collected using the recall order paradigm was analysed as follows. Maps not significantly
better than random (and corresponding recall lists), and recall sequences not containing structure (where no
items consistently occur together), were not analysed further, since the former show no evidence of allocentric
representations of the buildings on that map being present in the subjects’ spatial memory, and the latter

6We have also tried higher numbers or randomly generated maps, and found that 10,000 samples suffice for an approximation
of the distribution under the null hypothesis, since increasing this number to 15,000 or 20,000 did not make a difference.
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shows no structure to be analysed. Next, map structures (sub-map memberships) were derived using tree
analysis, and pairwise distances in all features were calculated (see Section 3.3). This data allows reporting
the influence of features on map structure, and the inter- and intra-subject variability of this influence
(Section 2.2). It also allows inferring subject-specific models reflecting the individual feature importances
of a subject, in the form of a metric or a ‘psychological space’ (subject-specific feature space) - see Figure
1. A clustering algorithm (described in Section 3.4), operating on the learned model, allows prediction of
sub-map structure, if the clustering hypothesis is plausible (assuming that cluster memberships correspond
to sub-map memberships).

Simple clustering based on a Euclidean distance metric, in the original feature space, fails to account
for participant map structures. The main reason for this is that different participants might not rely on
the same set of features; and the relative importance of these features might also differ across subjects (see
below, particularly Figure 7, for evidence). For this reason, learning an appropriate subject-specific model
(metric, or feature space) is crucial in order for our computational model to provide accurate predictions.
Since learning human representation similarity metrics (or psychological spaces) from highly noisy and sparse
data is a largely unexplored problem in the cognitive sciences7, we turn to machine learning for possible
solutions. We describe and empirically test three computational methods for tackling this problem below
(see Sections 3.4.1 and 3.5.1, as well as the Supplementary Information for details).

Together, these learned subject-specific models, and the clustering algorithm, constitute a computational
model of cognitive map structure learning able to predict sub-map structure in advance, and allowing the
verification of such predictions (Sections 3.4 and 3.5 compare the model predictions against human data).

3. Experiments

3.1. Overview of the experiments

This section reports the results of four experiments investigating the principles underlying cognitive map
structure. Experiment 1 (Section 3.2) is concerned with the question of whether this kind of structure
uncovered by the recall order paradigm is relevant - whether it impacts cognitive performance in other ways
than recall sequences -, investigating effects on distance estimation biases, sketch map accuracies, estimated
walking times, and planning times in real-world environments well known to subjects.

The plausibility of our central hypothesis - that cognitive map structure arises from clustering - is
investigated in the subsequent section (3.3), also in real-world environments chosen by subjects themselves.
This claim requires buildings that are more similar (closer in psychological space) to be more likely to be
grouped together in long-term memory representations, and thus more likely to be recalled together. We
report correlations between the probability of buildings being represented together, and proximity in various
features relevant to cognitive mapping. We also make between- and across-subject comparisons with regard
to feature importances.

Since a good model should be able to make predictions, we proceed to report the predictability of spatial
representation structure. We use a clustering model in order to predict map structure, assuming that cluster
membership in an appropriate ‘psychological space’ (i.e. weighted feature space) corresponds to sub-map
memberships.

However, a model clustering buildings in a static feature space fails to produce accurate predictions,
simply because there exists no feature space generalizable across participants (see Section 3.3). In order to
learn subject-specific feature spaces, we utilize three methods to uncover the features and feature importances
spanning the psychological space hypothesized to underlie spatial representation grouping in Experiments
2 and 3. We collect map structures of several different environments from the same subjects in these
experiments, using a subset of them to learn a model, and testing its predictions on the remaining subset.

7There has been an approach used in cognitive psychology for projecting data into a space in which distances reflect subject
similarities, called multidimensional scaling (MDS) (Shepard, 1957). This method is not applicable in our case, because it
requires a full pairwise distance matrix. However, our training data comes from several different environments; and pairwise
distances and similarities are only known within, and not across, those environments.
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In Experiment 2 (Section 3.4), subjects are asked to learn spatial memories of 3D virtual reality envi-
ronments. Unlike the other experiments, this approach allows full control over all properties of the stimuli
being memorized. Utilizing this flexibility of virtual reality, we report prediction results using clustering, and
the decision hyperplane method for learning subject-specific models, which tackles the challenge of inferring
multiple feature importances from few data points by generating the environments such that participants’
subsequent responses minimize the uncertainty of the model regarding the feature importances, inspired by
active learning in machine learning (Settles, 2010). After subjects have been queried on a reasonable num-
ber of environments, and the model’s uncertainty regarding their psychological space has decreased, they
are presented with completely random environments, on which the trained models are tested. We report
prediction accuracies both on environments generated such that they minimize model uncertainty (using
active learning), and on random environments.

Although virtual reality allows fine-grained control over memorized environments, it is necessarily com-
posed of strongly simplified stimuli and less complex surroundings. To show that the approach of inferring
subject-specific models and subsequently clustering objects can also successfully predict cognitive map struc-
ture in the much more complex real world, we once again collect data from subjects’ spatial memories of
real environments freely chosen by them in Experiment 3 (Section 3.5). Since the approach of optimally
minimizing model uncertainty is infeasible when using uncontrolled real-world memories, we use two more
general methods to infer subjects’ psychological spaces, global optimization and a Gaussian Discriminant
Analysis-based metric (see Section 3.5.1). Of these, the latter is novel, and the best performing approach
on our data. We report prediction results on data excluded from the model training process, substantiating
our central hypothesis, and showing, for the first time, the predictability of spatial representation structures
on the individual level.

3.2. Experiment 1 - Relevance of cognitive map structure extracted from recall sequences

This experiment was conducted to substantiate the recall order paradigm used throughout this paper
to infer cognitive map structure. If this paradigm infers something about actual representation structures
in spatial memory, then the uncovered structures should have a significant impact on both the speed and
accuracy of memory recall for spatially relevant information. To avoid possibly confounding effects of
stimulus presentation and memorization, the stimuli used were ones participants had already committed to
their long-term spatial memory - the experiment used buildings subjects were already very familiar with
and could easily recall information about8.

Although data consistent with two of the results presented in this section (the effects of map structure
on distance estimation biases and sketch map accuracies) have been observed and published before, this
prior work had used significantly fewer subjects than our experiment, and exclusively university students,
unlike our participants. (Hirtle & Jonides, 1985) had six participants, reporting distance biases and sketch
map accuracies; and (McNamara et al., 1989) had twenty eight, reporting only the former.

3.2.1. Participants

One hundred and fifty participants were recruited, consented, and compensated through the Amazon
Mechanical Turk (MTurk) online survey system (78 females, 74 males). Participants were required to have
at least 95% approval rating on previous MTurk jobs to ensure higher data quality, and all of them were
over 18 years of age (as required by the website).

3.2.2. Procedure

The experiment was conducted on a website participants could access through MTurk after giving their
consent. In the first two questions, subjects were asked to enter the name of a city they were very familiar

8The possible objection that the structures might be induced by the experimental paradigm, and learned by participants
during the trials, can be excluded, because of the approximately uniform distribution of the outlier sequences (the first few
sequences were not more likely to be outliers than the last few sequences, and no evidence for any learning of map structures
during the real-world experiments could be found in the data - see Supplementary Information for details).
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with, and, subsequently, to pick five buildings they know well. Thus, well-established long-term memories
were tested instead of novel stimuli. Subjects were instructed to make sure that they knew where in the city
these buildings were located, how to walk from any one building to any of the others, what each building
looked like, and what purpose it served. They were only able to proceed past this stage if the website was
able to locate all five of the buildings on a geographical map (Google Maps API9 was used to look up the
latitude and longitude of each building).

To verify that subjects had indeed formed allocentric spatial representations of the area of the city they
had selected, and to allow the analysis of the accuracy of their representations, they were also asked to
produce a ‘sketch map’, by dragging and dropping five labelled squares representing their buildings into
their correct place using their mouse (Figure 4A, top). No cues or information was provided on the sketch
map canvas, just an empty gray surface with five squares labelled according to subjects’ entered building
names. Thus, only the relative configuration of the buildings was analysed in this research, after optimal
translation, rotation and scaling to fit the placement and size of the correct map as well as possible, by using
Procrustes transformation (Gower, 1975).

After the sketch map, subjects performed a seven-trial recall test. In five of the seven trials, they were
given a cue or starting building, and were instructed to ‘recall all five buildings, beginning with the starting
buildings and the buildings that you think go with it’, encouraging recall of building names in the order they
came to subjects’ mind, closely following the instructions given by (Hirtle & Jonides, 1985; McNamara et al.,
1989) and others. In the remaining two, uncued trials, subjects were asked to start with any building they
wished. If subjects omitted or incorrectly recalled any of the buildings, they had to repeat the trial (thus,
only the ordering changed across trials).

The recall test allowed the experiment software to immediately infer subjects’ map structure using the
tree analysis algorithm (see Section 2.1. Smallest sub-maps - those not containing further sub-maps - were
extracted). The next stage of the experiment proceeded based on this structure. Participants were first
asked to estimate the time required to walk between four pairs of buildings. Unbeknownst to them, two of
the estimations concerned within-, and two of them across-sub-map pairs, in randomized order, and were
generated such that the Euclidean distances in the within-cluster trials were as close as possible to the
distances in the across-cluster trials, to mitigate effects of simple distance, as opposed to map structure.
After reading the instructions in their own time, subjects were told to estimate and enter the walking time
in minutes (the time required to walk from one of these buildings to another) as rapidly as possible. Their
responses, as well as their response times (time elapsed between presentation of the pair of buildings for
walking time estimation and subjects entering a number and clicking a button) were recorded.

In a subsequent stage, also based on the uncovered map structure, participants had to estimate the
distance between four pairs of buildings (Euclidean distance - ‘as the crow flies’ - as opposed to the walking
times of the previous stage). Once again, two within-cluster and two across-cluster pairs were selected such
that within- and across-cluster trials differed as little as possible from each other in terms of spatial distance.

Finally, once again in an untimed fashion, subjects were asked to judge the similarities of all pairs of
buildings, i.e.

(
5
2

)
= 10 pairs, as well as a control pair of one of the buildings to itself, both in terms of

visual similarity, and similarity of purpose/function - thus, they had to enter 2x11 similarity judgements.
Similarities were judged with the help of 1-10 rating scales, with 1 standing for not similar and 10 for
very similar. The two self-similarity judgements were randomly interspersed and verified to avoid subjects
rushing the process or entering random values.

Ground truth geographical maps containing participants’ self-chosen buildings were constructed by ob-
taining latitude and longitude coordinates from Google Maps API, and utilizing an elliptical Mercator
projection to obtain x and y coordinates suitable for comparison with subjects’ sketch maps. Euclidean
distances between buildings were also calculated based on this projection (as this procedure is more accu-
rate than most alternatives such as the Haversine formula). Finally, path distances as well as ground truth
walking times were obtained from Google Directions API 10, which plans the shortest possible walking route

9https://developers.google.com/maps/
10https://developers.google.com/maps/documentation/directions/
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Actual
distance (m)

Estimated
distance (m)

Distance bias
(Estimated-
Actual)

Estimated
walking time
(min:sec)

Response
time when
estimating
walking time
(s)

Within mean
Within std

µ = 1242,
σ = 1508

µ = 676,
σ = 1036

µ = −574,
σ = 1825

µ = 8 : 43,
σ = 8 : 23

µ = 8.4,
σ = 6.0

Across mean
Across std

µ = 1245,
σ = 1931

µ = 1139,
σ = 1739

µ = −146,
σ = 1703

µ = 12 : 45,
σ = 11 : 36

µ = 18.0,
σ = 92.3

Significance of
difference

p = 0.109
(nonsignificant),
U = 12594

p = 0.019
(significant),
U = 12502

p = 0.047
(significant),
U = 11900

p = 0.001
(significant),
U = 11009

p = 0.030
(significant),
U = 13097

Table 1: Effects of spatial representation structure on distance estimation, walking time estimation, and response times. All of
these estimated magnitudes, as well as response times, are significantly smaller when both buildings are on the same sub-map
(i.e. on the same representation) compared to when they are not. Data from 380 pairs of buildings were compared (269 across
sub-maps, and 111 within sub-map). Apart from the representation-dependent biases, subject estimations were reasonably
accurate (correlation of r = 0.40 between estimated and actual Euclidean distance, and r = 0.48 between estimated and actual
walking time as calculated by Google Maps)

between two buildings along pedestrian paths (which is usually distinct from, and longer than, Euclidean or
‘beeline’ distance).

3.2.3. Results

Participants with sketch maps not significantly better than random chance were excluded (using the
procedure described in Section 2.3). 86 participants with reasonably accurate survey knowledge of their
chosen environments remained (40 female, 46 male). Of these participants, 53 had structure apparent in
their recall sequences (20 female, 33 male). The difference in the ratio of structured representations between
male (72%) and female (50%) participants is statistically significant at p = 0.04 (U = 4.39) according to a
Mann-Whitney U test. We employed this test here and for a majority of our other significance tests (unless
otherwise specified), because the tested variables were not normally distributed according to a Shapiro-Wilk
normality test (p = 0.00, W = 0.63), violating the assumptions behind ANOVA or t-testing. The Mann-
Whitney test is a nonparametric test which has greater efficiency than the t-test on non-normal distributions
(and is comparably efficient to the t-test even on normal distributions) (Nachar, 2008).

To test whether map structure has an impact on other cognitive phenomena, we compared estimations
of distance, walking times, and planning times, between pairs of buildings lying on the same representation
(within sub-map estimations), and pairs of buildings on different representations (across sub-map estima-
tions). Table 1 reports the results (6 across sub-map and 1 within sub-map distance estimations were
excluded, because they exceeded 10km, clearly violating the instruction of being within walking distance).
Reported correlations are Spearman’s correlation coefficients, here as well as throughout the paper.

In order to avoid effects arising purely from differences in spatial distance, we have queried subjects on the
pairs of their buildings (among all possible pairs) which were the least different in spatial distance. In these
comparisons, effects purely of spatial distance are unlikely, since distances were not significantly different
between within sub-map and across sub-maps estimations (1242m and 1245m on average) - according to a
Mann-Whitney test (U = 12594, p = 0.11), the difference is not significant.

We have also examined the effect of whether maps were structured on sketch map accuracies. The sum
of squared errors (SSE) between the resulting sketch map building positions and the geographical building
positions were calculated, and SSEs for all maps with structure (µ = 0.305, σ = 0.276) were compared to
the SSEs for maps without structure (µ = 0.370, σ = 0.307). SSEs were found to be significantly smaller
for structured than for unstructured maps (p = 0.019, U = 2325), hinting at a correlation between map
accuracy and structuredness which can indeed be observed (r = −0.17, p = 0.04).

Finally, the SSEs between sketch map and geographic map distances were compared for pairs of within
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sub-maps and pairs across sub-maps, after alignment and normalization. The sketch map distance SSEs
within sub-maps (µ = 0.607, σ = 1.677) were significantly smaller than those across sub-maps (µ = 0.916,
σ = 1.53) according to a Mann-Whitney U test (p = 0.023, U = 6304000).

3.2.4. Discussion

The highly significant differences in the accuracies of sketch maps, distance and walking time estimations,
which all depend on whether or not the buildings involved in the estimation are on the same sub-map or on
different sub-maps, substantiate the claim that the structures uncovered by this method are indeed relevant,
and play a significant role in multiple cognitive mechanisms.

The trends in the distance error biases - distances generally being underestimated within sub-maps
compared to across sub-map estimates - match previously made observations using smaller numbers of
subjects (Hirtle & Jonides, 1985). The main difference is that this previous work has found underestimation
within- and overestimation across sub-maps, whereas our results suggest underestimation in both cases.
The negativity (underestimation) of the across sub-map distance estimation errors is statistically significant
compared to the null hypothesis that there is zero or positive bias (p = 0.03, U = 4937).

Both the difference in estimated walking times, and the differences in the response time in this question,
are novel results. As opposed to Euclidean distance estimation or sketch map drawing, which can be done
by glancing at or recalling a geographical map, accurate walking times are difficult to estimate without
actually having explored this environment and being able to plan the routes in question. Subjects need to
mentally plan the route and simulate the walk to estimate the time (or to recall the duration of the walk
from long-term memory, should the durations of all walks between all possible building pairs be readily
memorized by subjects, which is unlikely). The observation that the mean time required to do so more
than doubles across sub-maps, compared to within (and that the variance in RTs increases by an order of
magnitude) provides additional, substantial evidence for the relevance of map structures - as inferred from
recall sequences - to spatial cognitive processes.

3.3. Clustering and features determining map structure

In the Introduction, we have hypothesized that the structure of spatial representations in humans arises
from clustering within some psychological space. In this section, we investigate the plausibility of this
hypothesis. If this was the case, we would expect the probability of a pair of buildings being co-represented
(i.e. represented on the same sub-map) to strongly depend on their ‘similarity’ or distance across various
features including spatial distance, with stronger dependencies for spatially relevant features compared to
semantic or visual features. We would also expect several such features to play a role, since distance alone is
insufficient to explain previous results (Hirtle & Jonides, 1985; McNamara et al., 1989). We would expect the
relevance of each feature to be apparent from its influence on map structure, measurable by the correlation
between co-representation probability (the probability that two buildings are co-represented on the same sub-
map) and the distance in this feature. Finally, we would expect large inter- but small intra-subject variability
in these correlations, i.e. stable feature relevances within subjects which are not necessarily generalizable
across subjects, analogously to psychological spaces for concept representation (Nosofsky, 1986; Gärdenfors,
2004).

We investigate several features listed below, motivated by hints in the literature that they might play a
role in the representation structure of object-location memory.

1. Remembered distance, i.e. the distance on subjects’ sketch maps

2. True Euclidean distance based on geographical maps

3. Path distance (or ‘city-block’ / ‘Manhattan’ distance), since recent brain imaging evidence suggests
that the hippocampus - a spatially relevant brain region - represents both Euclidean and path distances
(Howard et al., 2014)

4. Boundaries in the environment (such as rivers, cliffs, city walls, etc.) - based on neuroscientific and
behavioral evidence that boundaries play an important role in spatial memories (Wang & Spelke, 2002;
Barry et al., 2006)
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5. The number of streets separating a pair of buildings (intersecting with a straight line connecting these
buildings)

6. The sizes of separating streets; that is, whether these streets could easily be crossed (whether or not
they were highways/motorways/primary roads which are difficult for pedestrians to cross)

7. Visual similarity (as indicated by participants), since clustering by perceptual properties has been
reported (Hommel et al., 2000), and vision has been suggested to be vital to spatial representation
(Ekstrom, 2015),

8. Functional similarity, or similarity of purpose, as indicated by participants - because action-based
similarity has been claimed to have an effect on spatial memory (Hurts, 2008), and also because of
the importance of action-related roles within the influential grounded cognition paradigm (Barsalou,
2008).

9. Phonetic 11 and morphological 12 similarity of building names. The main motivation behind includ-
ing these features was to investigate any possible interference on the structures inferred from recall
sequences caused by verbal short-term representations. Subjects might employ some short-term rep-
resentation strategy to complete the recall trials more rapidly - instead of recalling from long-term
spatial memory -, for example subvocal rehearsal loops (articulatory loops). Including phonetic and
morphological similarity features helps measure the effect of such verbal strategies.

The first six of these features - remembered, Euclidean and path distance, and boundaries, separating
streets, and crossable streets - were obtained based on geographical data available online. Most such geospa-
tial ground truth data used was obtained using Google’s publicly available Maps API, with the exception
of boundaries in the environment, and crossable streets (whether separating streets were difficult to cross) -
these two features were obtained from Open Street Maps (OSM) through their publicly available API called
Overpass 13. As in all experiments in this paper, ground truth maps and distances are based on an elliptical
Mercator projection of latitudes and longitudes obtained from Google Maps API, except for path distances
and walking times which were queried from Google Directions API.

All features were converted into distances / dissimilarities before subsequent analysis. Similarity features,
such as visual, functional, phonetic and morphological similarities, were subtracted from the maximum value
possible for that feature to obtain corresponding dissimilarities.

3.3.1. Participants, Materials, and Procedure

Data from Experiment 1 (Section 3.2 above) as well as Exp. 2 (see Section 3.4) and Exp. 3 A and B
(see Section 3.5) were analysed with regard to the plausibility of the clustering hypothesis, as well as the
underlying features determining map structure. Thus, the participants, materials and procedures for data
collection were exactly the same as in those experiments, following the recall order paradigm described in
Section 2.

All Figures in this Section are split into four parts, for Experiment 1, Exp. 2, and conditions A and B of
Experiment 3. We report results separately, since there were slight changes in procedure. Briefly, Exp. 2 was
conducted in three-dimensional virtual reality environments, whereas the other experiments used subjects’
established real-world spatial memories. Furthermore, cues were presented verbally in Exp. 1 and 2 and
spatially, highlighted on sketch maps, in Exp. 3 (Exp. 3B also used 8 buildings, unlike the 5 used in the
other experiments). Finally, Experiments 2 and 3 tested spatial memories of several different environments,
in order to facilitate learning a model and testing predictions, whereas Exp. 1 did not.

11Phonetic similarities have been determined using the Double Metaphone (Philips, 2000) phonetic encoding algorithm, since
it is more accurate than older alternatives such as Soundex, and also accounts for a large number of irregularities in multiple
languages, not just English (vital since many participants from several non-English speaking countries participated in this
experiment - see Supplementary Information for a detailed list). For building names consisting of multiple words, the sum of
the phonetic similarities of the constituent words was used.

12Morphological similarities were calculated based on recent work by (Khorsi, 2013), implemented by the PhonologicalCor-
pusTools library accessible at http://kchall.github.io/CorpusTools/. For building names consisting of multiple words, the sum
of the morphological similarities of the constituent words was used.

13http://overpass-api.de/
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Figure 6: Correlations between probabilities of being on the same sub-map, and distances along each feature, for pairs of
buildings in Experiments (from top to bottom): 1, Experiment 2 in virtual reality (therefore lacking geospatial features), and
3A, 3B. Correlations are reported separately for each feature. The three bars per feature show results at three different window
sizes w used for calculating co-representation probabilities (higher w lead to less noisy probability estimates through smoothing,
resulting in higher correlations). Empty bars show levels of correlation that would be expected if maps were clustered according
to the single respective feature only.

3.3.2. Results

The clustering hypothesis introduced in Section 1 implies that buildings closer together in psychological
space are more likely to be represented on the same sub-map in participants’ spatial memory. To test this
hypothesis, we investigated the correlations between the probabilities of pairs of buildings belonging on the
same sub-maps and between the distance between them, along the various features listed above.

Figure 6 provides an overview of the correlations of these features with the probabilities of co-representation
on the same sub-map. These probabilities were calculated using a moving average with window w of the
binary vector indicating whether or not pairs were stored on the same sub-map - simply put, the likelihood
of co-representation at a specific distance equals the ratio of the number of co-represented pairs divided by
the number of all pairs within some small window w close to this distance (for example, if w = 3 and out of
three building pairs with distances 95m, 100m and 105m two were represented on the same sub-map, then
the probability of co-representation at 100m would equal p = 2/3).

The Figure also shows the correlations that could be expected if participant’s map structure had arisen
from clustering by just that one feature (empty bars in Figure 6) - i.e. the correlations that would have been
observed had participants 1) used clustering to structure their maps, and 2) used only distances within one
respective feature for this clustering. These expected correlations were calculated using the same participant
data; but artificially structuring the subject map - using clustering along one respective feature - instead of
using subjects’ sub-map memberships. Gaussian mixture models (GMMs) (Redner & Walker, 1984) were
used for the artificial structuring, just like for prediction in the computational models described below, since
they are more psychologically motivated than other clustering algorithms (see Section 3.4.1).

Next, we have investigated the variability of the reliance of these features within and across subjects;
i.e. whether the same features were used by - and whether they were similarly important for - all subjects,
and whether they were the same for individual participants in different environments. Figure 7 shows
the standard deviations of the co-representation correlations of these features, across subjects (left panels)

16



Figure 7: Variability of features influencing cognitive map structure. Feature variabilities across all subjects (left) and across
map structures of individual subjects (right) are shown, plotted as error bars on each average feature correlation. Top:
Bottom: Feature variabilities in the test trials of Experiment 2. Middle: Feature variabilities in Experiment 3A. Bottom:
Feature variabilities in Experiment 3B.

and within subjects, i.e. across the maps of individual subjects (right panels), averaged over all subjects.
Specifically, the standard deviations of the point biserial correlation coefficients 14 between the feature
distances and co-representation probabilities are reported for all error bars in the plot. For the within-
subject plots (right panels), the magnitude of the bars is also calculated using point biserial correlation, for
the same reason - there being too few within-subject building pairs for the moving average-based probability
calculation.

Finally, according to Shapiro-Wilk normality tests, none of the distributions of feature correlations are
normally distributed (all p values for all features are many orders of magnitude less than 0.01). Rather than
most subject structures arising from these features weighted in the same fashion, or from feature correla-
tions concentrated around a most common value, the particular strengths of the influences on participants’
representation structures seem to be irregularly distributed. However, they are significantly more consistent
across individual participants’ map structures (Figure 7 right) than across all participants (Figure 7 left).

3.3.3. Discussion

The strong dependence of co-representation probability on distance along various features (Figure 6)
provides strong evidence for the plausibility of the clustering hypothesis. Furthermore, confirming intuitive
expectation, spatial features show a much stronger influence on map structure than other, non-spatial
dimensions.

Figure 7 shows that there is a large amount of variability in the importance of different features to various
subjects. This spread is significantly less across the map structures of individual participants (Figure 7 right)
than across all participants. Thus, although collecting a high enough number of map structures to reliably
infer subject-specific feature importances presents several practical challenges (see next section), doing so is
unavoidable for predicting spatial representation structures.

It is important to point out that correlation with co-representation probability alone is not a sufficient
metric for describing the influence exerted by a feature on cognitive maps. There might be indirect causation

14Biserial correlation with the binary vector indicating same or different sub-map pairs was used, instead of calculating
probabilities and using continuous correlation, because the numbers of available within and across sub-map pairs of buildings
for a specific map of a specific participant were frequently below the window sizes used for estimating co-representation
probabilities in Figure 6.
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or a common cause, or deceptively low correlations due to sparse data (for example, very few natural
boundaries are present in most cities, which causes low correlations despite their importance according to
the results below), or other reasons for correlation not translating to causation.

For this reason, to what extent different features facilitate the prediction of individual map structures
is a more meaningful measure of their importance in the cognitive map structuring process. The following
sections report prediction results, both in automatically generated virtual reality environments (Section 2)
and in real-world environments freely chosen by subjects (Experiment 3).

3.4. Experiment 2 - Predictability of map structure in virtual reality environments

This experiment investigated the question whether the clustering hypothesis allows robust advance pre-
diction of participant map structures. Because of the observation that feature importances vary greatly
across subjects, but less for individuals (Figure 7), it was designed to first learn these per-subject impor-
tances, before producing predictions using a clustering mechanism. This process was inspired by active
learning (Settles, 2010), a field in machine learning which allows algorithms to choose the data from which
they learn, thus facilitating better performance with less training data. This latter point is crucial for our
experimental paradigm - as inferring the representation structure of even small environments with few build-
ings requires several full recall sequences, there is a practical limit on how many structures per participant
can be produced - thus, this limited budget of data should be used in a fashion close to the statistical
optimum. Optimally reducing model uncertainty using active learning is one possible approach towards this
objective.

3.4.1. Computational methods

As described in the Introduction, a computational model of cognitive map structure requires learning
subject-specific models reflecting feature importances, as well as a clustering algorithm. For this experiment,
which allows full control over the memorized environments, we have used the decision hyperplane method
to infer learn feature importances. We constructed a training environment for each trial such that 1) they
contained two clusters (shop buildings and house buildings), 2) only the features of a single building, which
lay somewhere between the two clusters, were varied (see Figure 8). We trained a linear classifier to assign
the middle buildings of all trials of a participant to one or the other cluster in feature space. The class label
(dependent variable) y was derived from that participant’s recall sequences in each trial (y = 1 if the middle
building was co-represented - i.e. recalled together - with the shop buildings, and 0 if it was co-represented
with the house buildings). The distances of the middle building from the shop buildings along all features
(in unweighted feature space) served as predictor (independent) variables x.

Based on these variables, a linear ‘decision hyperplane’ was calculated, which separated the set of all
data points characterizing the middle buildings of a participant’s trials into two sets: into middle buildings
which were represented together with shops (if below the decision hyperplane) and into those which were
co-represented with houses (if above the decision hyperplane) - see Figure 8. The slope of this ‘decision
hyperplane’ in each feature dimension (distance, visual similarity / colour similarity, functional similarity)
thus indicated the importance of each feature to this participant (for example, if the decision hyperplane
in Figure 8 was horizontal, that would mean that the y-axis - spatial distance - would be the only fea-
ture of relevance for this subject. Conversely, if the plane was almost vertical, spatial distance would be
unimportant).

The decision hyperplane was calculated using logistic regression (Hosmer & Lemeshow, 2004), formulating
the question whether to group the middle building on the shop sub-map or the house sub-map as a binary
classification problem. Thus, the probability P (S|D) of clustering the middle building to the shop sub-map,
given a set of distances D = (ds, df , dp, ..., dn) from the shop buildings along a number of features, including
spatial (ds), functional (df ) and perceptual (dp) distance (difference in colour), was modelled using the
logistic regression equation

P (S|D) =
1

1 + e−WTD
, (1)
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Figure 8: The decision hyperplane method for inferring feature importances and generating environments in Experiment 2.
A: General layout of training trials, which consisted of two groups of two buildings (with equal colour and function), and a
middle building, the parameters of which could be varied (distance, similarity in colour and in function to the shop group). B:
Feature space representation - each building can be represented as a single point in a space spanned by the features (position,
colour, function). C: Distance space representation - middle buildings can be represented in terms of their distance to the
shop group along each feature. According to the clustering hypothesis, there has to be a ‘decision hyperplane’ calculable from
these middle buildings, such that those below the plane (i.e. those closer to the shop group) are most likely clustered with the
shop group, and those above the plane (i.e. farther away from the shop group) are most likely clustered with the house group.
D. Subject-specific models consist of a weighted feature space and a clustering algorithm. The weights of the feature space
can be calculated from the decision boundary - the importance of each feature is proportional to the derivative (slope) of the
decision boundary by that feature. E. Randomly generated testing environments, and comparison procedure. Subjects impose
a grouping even on random, unstructured environments, as shown by previous research (McNamara et al., 1989). The clustering
model also produces a grouping, based on the learned subject-specific model and the clustering algorithm. Subsequently, cluster
labels are compared (and, in this example, found to be incorrect).

in which the model parameters W = (ws, wf , wp, ....) control the slope of the decision hyperplane, and
thus represent participants’ feature importances in this model. They were used to construct the participant’s
‘psychological space’, i.e. a feature space weighted by these parameters (as illustrated in Figure 1B), which
lead to attenuated differences along features unimportant to the participant.

Subsequently, we used clustering in this weighted feature space for prediction. We employed the DP-
GMM (Dirichlet Process Gaussian Mixture Model), from the family of Bayesian nonparametric models, for
clustering (see Supplementary Information for the mathematical formulation and (Gershman & Blei, 2012)
for a tutorial review). Bayesian nonparametric models were successfully employed in categorization models
(Sanborn et al., 2006) and shown to be psychologically plausible, unifying previously proposed models of
category learning (Griffiths et al., 2007) and accounting for several cognitive mechanisms including category
learning and causal learning (Tenenbaum et al., 2011), transfer learning (Canini et al., 2010), and human
semi-supervised learning (Gibson et al., 2013). Given that such models give a good account of how humans
acquire novel concepts (subsuming prototype, exemplar, and rational models of category learning, among
others), and given that they can be seen as probabilistic clustering models, we hypothesized that they might
also account for sub-map learning.

DP-GMMs are extensions of Gaussian Mixture Models (GMMs) for an unlimited number of clusters.
GMMs are statistical models which aim to partition a set of data points in some space into a number of
clusters C by fitting C Gaussian probability distributions to the data, i.e. adjusting the parameters of
these C Gaussians such that the probability that the data was drawn from these distributions is maximized.
DP-GMMs have the same aim, but also allow inferring the number of distributions (and thus the number
of clusters C), not just their parameters. In this lies their key advantage compared to most other clustering
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models: they can be used without prior knowledge of the correct number of clusters (and they can expand
by adding new points either to the most likely existing cluster, or to a novel cluster, when observing new
data). This process of assigning new data points to clusters by calculating probabilities from distributions
optimally fitted to previous data has a lot in common with the basic problem of categorization, which is to
identify the category of a new object based on its observed properties and previously observed objects, which
is why Bayesian nonparametric models are similar to (in fact, if parametrized accordingly, mathematically
equivalent to) multiple psychological models of category learning proposed in the past (Griffiths et al., 2007).

The final sub-map membership predictions were generated by performing clustering, using a DP-GMM15,
in the weighted feature space learned from the subject. These predictions were evaluated by calculating
prediction accuracies and Rand indices (Rand, 1971). The former is simply the ratio of perfectly predicted
sub-map structures to all subject structures - however, this strict accuracy metric penalizes ‘near misses’
equally to completely wrong structure predictions (e.g. if seven building sub-map memberships are correct,
but a single one incorrect, the entire prediction is counted as incorrect; just like completely wrong structures).
Average Rand indices are reported as more fair metrics which provide a continuum between flawlessly correct
(R = 1) and completely incorrect (R = 0) predictions. The Rand index is a measure of the amount of
correctly assigned pairs among all pairs, and is defined as R = (s+ d)/

(
B
2

)
, where B is the total number of

buildings on a map structure, s is the number of building pairs on the same sub-map both in the predicted
and actual map structure, and d the pairs on different sub-maps both in prediction and in subject data.

3.4.2. Participants

Participants were students at the University of Manchester (compensated by vouchers). Subjects who did
not produce sketch maps significantly better than random chance in at least 50% of all training trials were
excluded, leaving 12 subjects whose data was analysed. Participants were told they need prior experience
with either virtual realities or three-dimensional computer games. These participants were recruited and
tested at the University of Manchester (instead of online) primarily because the setup required a modern
PC equipped with a graphics card to run the experiment smoothly. Further reasons were the requirement of
prior 3D gaming experience (difficult to verify online), and the need to ensure that the setup was equivalent
across subjects (e.g. screens were of the same size and quality, all subjects used a mouse and not a touchpad,
etc.).

3.4.3. Procedure

After giving their consent and reading instructions, participants completed 20 trials - 15 ‘training’ trials
which were used for training the model, and 5 ‘testing’ trials which were used for verifying the predictions of
the computational model. In total, the experiment took about 1.5 hours on average. Each trial was set in a
unique environment consisting of a horizontal ground plane, featureless sky, and 5 buildings. All buildings
used the same 3D model and thus had equal measurements, but could vary in colour, in function (being
labelled as either shops or houses) and in distance; and could have different labels (e.g. coffee shop, John’s
house).

Both trial types followed the same sequence. First, participants could freely explore the environment,
and were asked to memorize the positions and names of all buildings in it. In this memorization phase,
they were also asked to deliver a package from one of the shops to one of the houses. This task served the
dual purpose of forcing subjects to do a minimum amount of exploration, and, additionally, to make the
functional distinction between shops and houses more meaningful. After the memorization phase and the
delivery task, the environment vanished, and participants’ spatial memory was tested, by asking them for
1) a sketch map, produced by dragging and dropping labelled squares into their correct places, and 2) seven
recall sequences, 5 cued, and 2 uncued.

The first 15 ‘training trials’ each contained two distant groups of two buildings in close proximity, and a
‘middle’ building somewhere between these two groups. Both buildings in each group always had the same

15With variational inference to infer the most likely cluster memberships and parameters. We have used the bnpy Python
library for inference (Hughes & Sudderth, 2013)
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colour and function, and there was always one group containing two shops and a second group containing
two houses. The middle building was intended to be represented together with one or the other group by
subjects, depending on its distance and similarity to the groups. In the first 7 of these trials, the colours,
functions, and distances of the groups and the middle building were generated randomly, ensuring only
within-group consistency of colour and function and that buildings within groups were closer than the
distance between the groups, such that they unambiguously formed clusters.

After the 7th16 training trial and all subsequent training trials, a ‘decision hyperplane’ was calculated
using logistic regression, which separated all middle buildings into two groups, those belonging to the shop
cluster, and those belonging to the house cluster. This decision hyperplane facilitated the generation of the
remaining 8 training trial environments. For each trial after the 7th, the two groups were again generated
randomly, but the middle building was parametrized such that the uncertainty regarding subjects’ feature
importances was minimized. To achieve this, the parameters of the new middle building were drawn from
the region of the currently calculated decision hyperplane, since this is the region in which the model is least
certain as to where buildings should be assigned17. Formally, this is equivalent to active learning (Settles,
2010) with uncertainty sampling (Lewis & Gale, 1994) in machine learning. Each of these remaining 8
training trials maximally reduced the model uncertainty regarding feature importances.

Finally, participants completed 5 ‘testing’ trials, going through the same procedure of memorization,
delivery task, and producing a sketch map and recall sequences. These testing trials were generated com-
pletely randomly, without any restrictions on building parameters, not even the restriction of there needing
to be clusters defined in any way along any of the features. They were used to test the predictions of the
computational model.

3.4.4. Results

We included all features described in Section 3.3 in the following analysis, except for the four geospatial
features not relevant in our simple virtual reality environment (path distance, natural boundaries, number
of intersecting streets, whether they could be easily crossed). For the correlations of these features with co-
representation probabilities (Figure 6), as well as across- and within-subject variances of these correlations
(Figure 7), see Section 3.3.

Above, we have introduced a method to infer participants’ feature importances for clustering, based on
the inference of a decision hyperplane describing at which point in feature space subjects stop assigning
a middle building to one sub-map and start assigning it to another. With this method, we have both
components of a predictive model of cognitive map structure: 1) subjects’ psychological spaces, spanned by
a set of features and feature importances, as inferred by the decision hyperplane approach, and 2) a clustering
algorithm. We chose DP-GMM as the clustering algorithm, given its substantial advantage of being able to
infer the number of sub-maps automatically, and motivated by its success in other psychological models.

Figure 9 shows the results of this predictive model on all participant cognitive map structures (20 per
subject; 15 training maps used to infer feature importances, and 5 testing maps used to verify model predic-
tions). Prediction can be incorrect on training trials, because feature importances are being inferred using
the decision hyperplane approach without taking into account the clustering algorithm and its idiosyncrasies
(see red cells of the first 3 rows). After inference of feature importances and running the clustering model
within this feature space, 73.5% of the training map structures could be predicted.

The interesting part of Figure 9 is the bottom row of each sub-plot, which contains the advance predictions
of the model on randomly generated environments it was not trained on and not confronted with prior to

16Due to the noise inherent in the inference of building map memberships, using active learning from the start yielded bad
results, the model hypothesizing a highly sub-optimal decision hyperplane it could not recover from using the limited number
of subsequent data points. A few randomly initialized trials were used at the start to avoid this and to allow the inference of
an approximate decision hyperplane before starting the active learning process. Empirical experimentation using artificially
generated maps, and an amount of outliers comparable to subjects, suggested 7 random and 8 uncertainty sampling trials,
when given 15 datapoints (from the 15 trials).

17As the region of least certainty, or greatest uncertainty, comprises the points with a classification probability of 0.5 to either
class, these points can be defined as: DLC = argmin

D
|0.5− P (S|D)|. From this and eq. (1), it follows that WTDLC = 0, i.e.

that points of least certainty lie on the hyperplane described by W, confirming the informal argument in the text above.
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Figure 9: Results of a predictive clustering model using subjects’ feature importances, learned using the decision hyperplane
approach. Each sub-plot reports all prediction results for one subject, using green cells for correct predictions, red cells for
incorrect predictions (one or more buildings grouped to the wrong sub-map), and white cells for subject maps either not better
than random chance or without apparent structure. Top 3 rows in each subplot show results on the training trials (dark
colours), and the 4th, bottom row shows the prediction accuracies on the test trials (bright colours). On average, 75% of all
test map structures could be predicted correctly (green cells). For comparison, the probability of prediction by random chance
is 0.4% for two sub-map and 3.1% for one sub-map structures.

making the prediction. On average, 75.0% of all test map structures could be predicted correctly
in advance using the decision hyperplane method and DP-GMM for clustering; and the majority of map
structures could be predicted for all subjects except for one.

Note that this is a strict accuracy metric - if the model predicts four out of five building sub-map
memberships correctly, but a single one incorrectly, the entire prediction is counted as incorrect. The Rand
index (Rand, 1971) is a more comprehensive metric, providing a number between 1 (flawless clustering)
and 0 (all cluster memberships incorrect). The average Rand index of predicted vs. actual test
map structures was 0.83 in this experiment, meaning that for 83% of the pairs of buildings, it could
be correctly predicted whether or not they belong to the same sub-map in participants’ spatial memory
(according to their recall sequences).

If using the same DP-GMM model with feature importances inferred from co-representation correlations
instead, the prediction accuracy drops to 59.1% on the testing maps, with an average test-map Rand index
of 0.75, indicating that the decision hyperplane approach is better suited to uncovering feature importances
than just using correlations.

Since each environment contained five buildings, there could be up to two sub-maps, and the clustering
process could be framed as assigning one of three values to each building - member of sub-map #1, or of sub-
map #2, or a single-building cluster (sub-maps with only a single building were excluded from participant
data, for reasons explained in Section 2; however, if the model produced single-building clusters, these were
not excluded from the model predictions, but instead counted as mistakes). Thus, the baseline probability
of randomly coming up with the correct clustering is, on average, (1/3)5 = 0.4% for map structures with
two sub-maps, and (1/2)5 = 3.1% for structures with one sub-map of unknown size. In this experiment, 14
subject test map structures contained two sub-maps, and 30 structures one sub-map.

3.4.5. Discussion

The observation that a large majority of subject map structures can be predicted in advance using
a clustering model, together with an appropriately scaled feature space, provides further support for the
clustering hypothesis. The improvement of prediction accuracy from 59.1% to 75.0% (and Rand index
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from 0.75 to 0.83) when using the decision hyperplane approach to infer feature importances, instead of just
using co-representation correlations, suggests that this approach is more suitable to uncover the psychological
spaces in which the clustering takes place.

However, the present approach has several shortcomings. First, it is only applicable to controlled en-
vironments - thus, investigating participants’ past long-term memory structures requires different methods
(see next section). Second, the fact that calculating feature weights from a decision hyperplane does not
take into account the actual model generating the predictions (in this case, the DP-GMM). Finally, the
approach assumes linearity, i.e. that the surface separating buildings co-represented with one or the other
sub-map is a linear hyperplane (as opposed to a non-linear surface). These shortcomings are reflected in
the sub-optimal performance of the model on the training trials in Figure 9. Although a model should be
able to fit its training data well, the performance on training trials (73.5) and testing trials (75%) is not
statistically significantly different.

Thus, it is likely that more powerful models to learn subjects’ feature spaces are needed. The next section
introduces two such approaches addressing these shortcomings, one learning the optimal feature weights for
the employed clustering model using global optimization, and the second lifting the linearity assumption.
Both of them have the additional advantage that they do not require controlled environments.

3.5. Experiment 3 - Predictability of cognitive map structure in the real world

In this experiment, real-world buildings well known to participants were used (similarly to Exp. 1). Apart
from providing additional evidence for the clustering hypothesis by showing that cognitive map structures in
real-world environments can be predicted using a clustering model, this section also introduces and validates
two generally applicable ways of learning subject-specific models.

3.5.1. Computational methods

Unlike in the previous section, where participants’ feature importances were inferred using the decision
hyperplane method - which requires controlled environments (Section 3.4), we use two generally applicable
methods in this section (see Figure 10):

1. Global optimization (Jones et al., 1993)18 - among all possible feature weights (between 0 and 1),
select the features and weights best explaining the groupings of the ‘training’ structures obtained from
the participants (a part of each participant’s data was used for training, and the rest for ‘testing’, i.e.
prediction verification). Use clustering in this weighted feature space for prediction.

2. GDA (Gaussian Discriminant Analysis) (Bensmail & Celeux, 1996) - using the set of all training
building pairs, learn a probabilistic (Gaussian-based) model capable of calculating the probability of
whether any given pair of buildings are co-represented on the same sub-map, given the distances of
this pair along various features. Use this probabilistic model as a distance metric19 (such that building
pairs which are likely to be on the same representation are close, and those which are not are distant,
under this metric). Predict subject map structures by clustering under this learned, subject-specific
metric. See Supplementary Information for the mathematical formulation.

The first of these two, as well as the hyperplane approach, are both linear methods, whereas the latter
method (GDA) allows non-linear solutions. Linear methods project data into psychological space by linearly

18We used the locally biased variant (Gablonsky & Kelley, 2001) of DIRECT (DIviding RECTangles) (Jones et al., 1993),
a global, deterministic, derivative-free optimization method based on Lipschitzian optimization, which can handle the kinds
of non-linear and non-convex functions which clustering accuracy inevitably entails. DIRECT finds global optima by system-
atically dividing the feature space into smaller and smaller hyperrectangles, returning the one yielding the best results upon
convergence.

19For a pair of buildings represented by feature vectors x1 and x2, given their absolute difference ∆x = |x1 − x2| as
well as a trained GDA model which is able to calculate the probability p(c = 1|∆x) that these buildings are co-represented
on the same sub-map, based on appropriately fitted Gaussian distributions (Bensmail & Celeux, 1996), we simply define
the metric as dMetric(x1,x2) = 1 − p(c = 1|∆x), where the probability of co-representation is derived using Bayes rule,
p(c = 1|∆x) ∝ p(∆x|c = 1)p(c = 1), and the generative densities are modelled using multivariate Normal distributions

p(∆x|c = 1;µi,Σi) = (2π)−
D
2 |Σi|−

1
2 e−

1
2

(∆x−µi)
ᵀΣ−1

i (∆x−µi) (see Supplementary Information for details).
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Figure 10: Learning subject-specific models for predicting cognitive map structure. A: General modelling procedure. Several
sets of buildings and their groupings are obtained from different environments using the recall sequence paradigm, and these
are split into two parts, training data and test data. A subject-specific model is learnt such that clustering under this model
(e.g. in an appropriately weighted feature space) reproduces the training data as well as possible. Finally, model predictions
are generated by clustering test buildings not seen at training time, under the learned models, and these predictions are
compared to the actual participant map structures (groupings) in the test data. B: A weighted feature space (modelling
participants’ ‘psychological space’) can be obtained by searching for the optimal weights using global optimization. This
method keeps dividing the space of possible feature weights into thirds, and further divides potentially optimal regions (those
which correspond to feature weights under which clustering yields a grouping close to participant’s map structure), until the
weights best matching participant training data are found. C: A metric space modelling participants’ psychological space can
also be defined by a non-linear metric instead of linear feature weights. Such a metric can be learned by fitting a GDA model
to separate building pairs that belong to the same sub-map from those that do not. In order to make predictions, building
representations are projected into a space where their distances are dictated by this GDA model (such that they are close if
they are likely to belong to the same sub-map); and clustering is performed in this space.

weighting the features, and try to find weights such that buildings co-represented on the same sub-maps
are closer to each other in this weighted feature space than other buildings (note that the problem of
projecting the data into a subject-specific feature space with some learned weights is equivalent to finding
a distance metric with those feature weights20). In addition to these linear methods, we wanted to test
a more powerful method that can capture non-linearities as well as interactions between the features (e.g.
situations where the importance of one feature depends on the magnitude of another). We implemented a
novel method, instead of using existing metric learning approaches, see (Yang & Jin, 2006) for a review,
for the following reasons. First, our method can naturally incorporate the hypothesis that same sub-map
building pair differences should be small, and thus located close to the origin, and should be separable
from different-map building pair differences (these two distributions of pair differences can be naturally
modelled using Gaussian distributions) - see Figure 10C. Second, our data violates some of the assumptions
of existing methods21. Third, most existing machine learning solutions - as well as MDS, used in cognitive

20This equivalence is easy to see from rewriting the equation of the Mahalanobis distance metric, dM (x1,x2) =√
(x2 − x1)ᵀW (x2 − x1), to the following form: d2

M (x1,x2) = ||A(x2 − x1)||, where W = AᵀA, and A is a projection
map that can transform data x into weighted feature space y = Ax

21Metric learning is concerned with finding a distance metric - such as linear, Mahalanobis distance metrics, and their
associated parameters, e.g. (Xing et al., 2002), or non-linear metrics by projecting the data into kernel space using e.g.

24



psychology to model similarities as distances (Shepard, 1957) - need to embed both training map and test
map buildings into the same space for model training and testing. This is not possible in our case, because
1) for the features of functional and perceptual similarity, the pairwise similarities across environments are
unknown (since subjects only indicate these within each map, not across maps), and 2) spatial distances
might not be comparable across cities or countries (whether two buildings belong to the same representation
strongly depends on their geographical distance; but this dependence likely becomes weak or non-existent
if they are very far apart).

After a subject-specific model has been learned, sub-map memberships can be predicted by performing
clustering based on this model (i.e. within the feature space / under the metric learned from the subject).
Just like in the previous section, we used the DP-GMM clustering algorithm for this purpose.

Before reporting prediction results, we should point out that there are theoretical as well as practical
limits on the predictability of cognitive map structures. Section 4.3 discusses these in more detail and
suggests some solutions. Here, we shall focus on the main issue concerning data analysis, namely detecting
and removing outliers caused by distractions or lapses of attention. If a set of buildings that are actually
co-represented on a sub-map in a subjects’ spatial memory is recalled together most of the time, but the
subject is distracted during one of the recall sequences, and recalls a different (not co-represented) building
instead, the subsequently extracted structure will be incorrect (since tree analysis requires items to occur
together in every recall sequence in order to identify a sub-map). Even a single distraction during the 7
or 10 (in Experiment 3 A or B) recall sequences per trial can yield substantially different structures (see
example in Figure 13 in Section 4.3, in which a distraction causes a drop of 0.6 in the Rand index to the
correct structure).

The jackknifing procedure we use to eliminate outliers was suggested by the authors pioneering the
recall order paradigm (Hirtle & Jonides, 1985; McNamara et al., 1989) to mitigate this issue, but relies on
statistical significance testing to identify those outliers, and thus frequently fails to do so due to the small
number of recall sequences collected in our experiments (a necessary limit arising from the need to collect
multiple different map structures for training and testing a predictive model - subjects already took up to
3.5 hours for these experiments even with this small number of sequences).

It is possible to estimate the effectiveness of jackknifing in our data - and the percentage of incorrectly
inferred and thus unpredictable map structures resulting from it (see Figure 11). To do this, we simulated
distractions by randomly swapping two items in one of the sequences in each trial. This is a reasonable
model of distractions, since the only way subjects can make mistakes is by changing the order of their input
(they are forced to repeat the trial if they omit or incorrectly recall an item).

The number of simulated distractions (frequency of swapped items) makes no difference to the estimated
percentage of outliers that are not caught and excluded by jackknifing. We used one distraction per trial
(however, the following results stayed the same with 0.5 or 2 distractions per trial). For the 5 buildings
maps (and 7 recall sequences), and averaging over 100 runs, each with a single random non-cue lapse for all
subjects, simulated distractions cause changes in map structure (relevant outliers) in µn = 65.4%, σn = 3.7%,
and within these, outlier removal is effective in µe = 59.4%, σe = 5.0%. The situation is somewhat better
on the 8 building maps, due to the larger numbers of sequences collected and thus higher statistical power -
here, outlier removal is effective in µe = 56.0%, σe = 8.1% of the cases (and necessary only in µn = 33.2%,
σn = 6.0%). This leaves on average µu = 26.6% (σu =

√
σ2
e ∗ σ2

n + µ2
e ∗ σ2

n + µ2
n ∗ σ2

e = 3.9%) of disruptive
simulated lapses of attention for condition A, and µu = 15.0% (σu = 4.3%) for condition B, which cannot
be mitigated by jackknifing.

If we assume this uniform random swapping to be a reasonable approximation of subject distractions,
this would mean that apart from the approximately o = 9.5% of sequences which were successfully removed

a Radial Basis Function (RBF) kernel Φ in a distance function dRBF (x1,x2) =
√

(Φ(x1)− Φ(x2))ᵀ(Φ(x1)− Φ(x2)), e.g.
Baghshah & Shouraki (2010); Chitta et al. (2011). However, the former makes the assumption of linear separability, and the
latter require variances to be isotropic, i.e. to not differ much across features (since the RBF kernel uses a diagonal covariance
matrix, it cannot fit non-isotropic data well - see Ong et al. (2005)). As both of these assumptions are occasionally violated
in our subject data, these metric learning approaches are not applicable. In contrast to existing metric learning, our proposed
approach learns a probabilistic model in the space of pairwise differences (instead of learning from scalar distance values, it
learns from difference vectors), and thus can fit non-isotropic and non-linear data.
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Figure 11: Estimated maximum possible prediction rate using the data in Experiment 3. A: Assuming that distractions /
lapses of attention manifest as randomly swapped items in recall sequences (and cause changes in the inferred tree structures),
a substantial number of them cannot be detected using the outlier detection procedure (jackknifing) proposed in the seminal
work on hierarchical cognitive maps and employed in this paper. B: Undetected outliers in recall sequences cause a number of
inferred map structures to be incorrect. This results in a percentage of map structures not predictable even by good models.

as outliers using jackknifing (and thus part of the effective 59.4% or 56% for cond. A and B), there would
be an expected additional µo = 6.5% (σo = 0.1%) of sequences for condition A, and expected µo = 2.5%
(σo = 0.7%) for condition B, which would likely be outliers causing structure changes which have not been
removed by jackknifing because of the lack of statistical significance. It follows that the expected probability
of extracting correct map structures under these assumptions - and thus the maximum possible prediction
rate - is around (1 − 0.065)7 ' 63% for condition A (since there are 7 sequences per trial), and around
(1− 0.025)10 ' 78% for condition B (since there are 10 sequences per trial).

To summarize, the observation that not all simulated distractions (outliers) can be identified and omitted
by the jackknifing procedure strongly suggests that the data collected from human subjects also contains
outliers not caught by jackknifing. Thus, these outliers prevent perfect prediction of subject map structures.
Figure 11 summarizes this reasoning and the maximum possible prediction rates estimated based on it for
both conditions.

3.5.2. Participants

Data from 71 participants was analysed in this section, 54 in Experiment 3A (asked for 5 environments
with 5 buildings each), and 19 in Exp 3B (asked for 3 environments with 8 buildings). Subjects unable to
produce at least two sketch maps significantly better than random chance (see Section 2.3), with structure
apparent from their recall sequences for at least two maps, were excluded, as at least two map structures were
required to have both a training and testing map. Participants were recruited, consented, and compensated
through the Amazon Mechanical Turk online survey system, and were required to have at least 95% approval
rating on previous jobs to ensure higher data quality.

3.5.3. Procedure

The procedure was similar to the one used in Experiment 1. This experiment was also conducted on
a website participants could access through MTurk after giving their consent. Unlike 1, this experiment
consisted of multiple trials (5 in condition A, 3 in condition B), each trial following an equivalent procedure
but asking for a completely different set of buildings, possibly in a different city. Subjects took between one
and 3.5 hours to complete this repeated trial experiment (this includes possible breaks, since the experiment
was performed online in participants’ homes, unsupervised, and the experiment was not timed).
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In the first questions of each trial, subjects were asked to pick a number of buildings they know well -
5 in condition A, and 8 in condition B (thus, in total, 25 buildings had to be recalled for the 5 trials of
condition A, and 24 for the 3 trials of condition B). Thus, well-memorized long-term memories of real-world
environments were tested instead of novel stimuli in virtual reality. Subjects were instructed to make sure
that they know where in the city these buildings are located, how to walk from any one building to any of
the others, what each building looks like, and what purpose it serves.

The subsequent questions of each trial required subjects to produce a sketch map, and to perform a
recall test consisting of 7 recall sequences in condition A, and 10 in condition B (in both cases, as many cued
sequences as there were buildings on the maps, and two additional uncued sequences). Subjects followed the
same instructions as in Experiment 1 ; the crucial difference being that instead of presenting cues verbally
by writing out the name of the cue building, cues were presented visually (cue modality was changed to
mitigate the strong effects of phonetic and morphological similarity in the prior experiments, presumably due
to articulatory rehearsal strategies). Participants were shown building positions on their own sketch maps
prior to each recall sequence question, excluding the labels - only the uniform gray squares symbolizing the
buildings were shown. For each cued recall question, the cue (starting building) was indicated by highlighting
the cue building in green colour and with a thick border.

In the final question, subjects were asked to judge the similarities of all pairs of buildings, i.e.
(
5
2

)
= 10

pairs in condition A and
(
8
2

)
= 28 pairs in condition B, as well as a control pair of one of the buildings

to itself, both in terms of visual similarity, and similarity of purpose/function (using 1-10 rating scales as
before).

3.5.4. Results

Figure 12 shows prediction accuracies (the ratio of perfectly predicted map structures to all subject map
structures) using DP-GMM clustering and GDA subject-specific model learning. Using the best possible
set of features shown to the model22, 68.6% of the 185 subject map structures with 5 buildings of
Experiment 3A (with up to two sub-maps per structure), and 79.2% of the 48 subject map structures
with 8 buildings of Experiment 3B (with up to four sub-maps per structure) can be predicted
accurately, such that every single predicted sub-map membership is correct for these percentages of test
maps. Average Rand indices for these models are 0.87 for condition A and 0.95 for condition
B, which means that even the structures which are imperfectly predicted, causing a lower than optimal
prediction accuracy, are highly similar to the correct structures (co-represented building pairs are predicted
correctly in 87% in condition A and 95% in B). Note that the prediction accuracy of the best model is
statistically indistinguishable from the estimated maximum possible prediction rate (calculated above based
on simulating distractions by random swapping). This suggests that the proposed novel GDA-based method
does well at learning subject feature spaces, and that the subsequent clustering model, based on a previously
proposed Bayesian model of category learning, can infer the sub-map memberships and numbers accurately.

Figure 12 also shows the numbers of sub-maps contained in participants’ structures. In general, the
prediction task can be seen as assigning one of K + 1 values to each building, where K is the maximal
number of possible sub-maps (single-building clusters are also possible, hence the increment by one). Thus,
the baseline probability of randomly coming up with the correct clustering is, for condition A, (1/3)5 =
0.4% for map structures with two sub-maps, and (1/2)5 = 3.1% for structures with one sub-map. For
condition B, this baseline expected random clustering accuracies are several orders of magnitude lower
(2.5 ∗ 10−4%, 1.5 ∗ 10−3%, 1.5 ∗ 10−2% and 0.3% respectively for K = 4, 3, 2 and 1).

The model accuracies when successively removing particular features (bars from left to right in Figure
12) provide an additional measure for how important these features were, aggregated over all subjects, and
measuring importance in a causal fashion, since this is a predictive model. The most important features
were those which caused the greatest drops in accuracy upon their removal. In condition A, two features

22Estimated from the training data, using a greedy search approach - starting with a single feature (Euclidean distance) and
then iteratively adding the feature which brings the clustering prediction closest to participants’ actual groupings; repeated
until either all features are included or the clustering prediction accuracy stops increasing.
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Condition All features,
subject-specific
GDA model

A-priori features
subject-specific
GDA model

No subject-
specific model

Condition 3A 79.2 % (RI=0.94) 70.8% (RI=0.88) 41.7% (RI=0.76)
Condition 3B 68.6% (RI=0.89) 63.4% (RI=0.83) 60.2% (RI=0.78)

Table 2: Prediction accuracies (and Rand indices) in Experiment 3, for all features and subject-specific GDA+DP-GMM model
(second column), for features known a-priori, without having to ask subjects to rate similarities or draw sketch maps (third
column), and finally using a subject-general model, without learning subject-specific feature weights. Rows: Condition 3A
(19 subjects, 48 map structures from as many distinct environments, 112 sub-maps), and condition B (54 subjects, 185 map
structures from as many distinct environments, 310 sub-maps).

are significantly more important than the rest - sketch map distance and the product of path distance and
visual similarity -, whereas the importances are similar in condition B, with a slightly larger accuracy drop
caused if omitting sketch map distance. In both conditions, about 2 out of 5 map structures can still be
predicted when using solely Euclidean distance.

The strong influence of sketch map distances raises an additional question regarding predictability of
cognitive map structures - is advance prediction possible without asking the subject anything (other than a
list of buildings he knows)? To investigate this question, we have run the predictive model on data from which
visual similarities and sketch map distances were removed, i.e. solely on data which can be derived from the
list of subjects’ buildings (see Section 3.3 for geospatial data sources). Subjects’ functional similarities were
also removed from this data, and replaced by an objectively calculated measure of functional relatedness.
Specifically, we used the Jaccard similarity metric on lists of building types from Google Places API 23. The
objective functional similarity metric thus obtained does reflect subjects’ own judgements - the correlation
between them is r = 0.66 - but is somewhat different, since it does not reflect subject idiosyncrasies, and is
also free of noise or biases.

Using GDA for subject-specific model inference, and using these features which are all known a priori -
derivable from the subject building lists and public geospatial databases -, 75% of map structures can be
predicted in advance for condition A (Rand index: 0.91), and 68.8% in condition B (Rand index: 0.88).

Finally, we have attempted to predict subjects’ cognitive map structures without learning subject-specific
models at all, by trying to infer a psychological space common to all subjects, and clustering within this
space. Inferring someone’s spatial representation structure without knowing anything about them would
have great advantages for robotics applications and geographical planning and map design, among other
fields (see Section 4.1). The resulting prediction accuracies (and Rand indices) for condition A and B were
41.7% and 60.2% (and RI = 0.76 and 0.78) respectively. In accordance with the results in Section 3.3,
the model performs significantly worse when not allowed to learn subject-specific feature spaces. However,
even these impoverished models can predict whether or not two buildings are co-represented on the same
sub-map in more than 3 out of 4 cases.

3.5.5. Discussion

The model prediction accuracies reported above are close to the estimated maximum possible prediction
rates from noisy map structures (based on simulating participant distractions using random swapping),
calculated at the beginning of this Section: 62.5% for condition A, and 78.0% for condition B. This shows
that the model accounts well for this noisy data, despite not being able to predict 100% of subject map
structures.

23 Places API can return a list of known building types when queried - see https://developers.google.com/places/

supported_types for a list. Usually buildings have several applicable types, ranging from specific to general, e.g. ‘meal
takeaway’, ‘restaurant’ and ‘food’ for McDonalds. The Jaccard index (JI), defined as the ratio of the size of the intersection to
the size of the union of two sets, measures how many items in these type lists match between two buildings, as a proxy for their
functional similarity. For example, JI = 0.5 between the McDonalds example and a building with types ‘bakery’, ‘restaurant’
and ‘food’. The type ‘establishment’ was present for almost all buildings and was thus excluded from the computation of JIs,
being uninformative.
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Figure 12: Accuracies obtained by predicting participant’s map structures using DP-GMM clustering under the learned
subject-specific models. The first bar shows the number of all subject map structures (and, within them, the numbers of
structures containing the specified numbers of sub-maps). Top: results in condition A. The first bar shows all subject maps,
the second the prediction accuracy for the best feature set (Euclidean, path*morphological, sketch map, path*visual, pho-
netic, Euclidean*morphological, morphological, sketch map*Euclidean distances); bars 3-8. show accuracies when successively
removing the last feature. Middle: results in condition B. The second bar shows the best prediction accuracy (Euclidean,
path*functional, sketch map*morphological, morphological*separating streets, path*phonetic, sketch map, sketch map*path
and sketch map*Euclidean distances); bars 3-8. accuracies when successively removing the last feature. Bottom: Prediction
accuracies of the optimization-based subject-specific model. Best model accuracies for condition A and B are shown in the
second bar of the left and right bottom plot.

29



Even using solely features which can be objectively derived from geospatial (and linguistic) information
from participants’ specified buildings, without collecting any subjective data such as sketch maps or visual
similarity judgements for the test maps, solid prediction is still possible - 70.8% for condition A and 68.8%
in B (although recall sequences still need to be collected in order to learn subject-specific models). This
makes a subject model, once learned, applicable to any environment encountered by that subject.

These results further substantiate the plausibility of the clustering hypothesis, and in particular, provide
evidence that nonparametric Bayesian clustering is a suitable model not only for human category learning
(Griffiths et al., 2007), but also for cognitive map structure learning; and fit in well with the growing body
of evidence for ‘Bayesian cognition’ (Tenenbaum et al., 2011).

4. General Discussion

A growing body of evidence suggests that rather than storing spatial information within some global
reference frame, human spatial memory employs local, object-centered representations (Marchette & Shelton,
2010; Chen & McNamara, 2011; Greenauer & Waller, 2010; Meilinger et al., 2014). This is consistent with
the much earlier proposal that spatial memories are organized according to hierarchies (Hirtle & Jonides,
1985; McNamara, 1986; McNamara et al., 1989; Holding, 1994; Wiener & Mallot, 2003), as well as with
recent neuronal evidence (Derdikman & Moser, 2010; Han & Becker, 2014).

In this paper, we made the first attempt to quantitatively explain and predict the local structure of
spatial representations. We have found strong correlations between the probability that two buildings are
co-represented24 and features such as Euclidean distance, path distance, and visual and functional similarity.
These correlations suggest that clustering based on proximity along these features is likely to give rise to the
observed representation structure. We have developed multiple methods for exploring how important these
features are for individual subjects (i.e. learning their ‘psychological spaces’), even if only small amounts of
data are available, and have developed and evaluated a predictive model of cognitive map structure based
on Bayesian nonparametric clustering in these learned psychological spaces. We have shown that our model
can successfully predict spatial representation structures in advance in the majority of cases.

The results from our model are very promising, but their plausibility depends on the empirical method
used to expose spatial representation structure. Although the structures identified by our recall order
paradigm are substantiated by their significant influence on several cognitive phenomena (Section 3.2),
there is clearly room for improving the experimental methodology. After briefly outlining the implications
of models of cognitive map structure, the discussion below outlines some alternative approaches, and suggests
reasons for the imperfect prediction rates.

4.1. Implications of modelling cognitive map structure

We have reported significant effects exerted by cognitive map structure on spatial memory-related perfor-
mance in Section 3.2. Together with prior evidence on priming, map distortion, distance estimation biases,
and related effects, it seems clear that representation structure is relevant to spatial memory.

Apart from psychology, its investigation is also of interest for neuroscience. Strong evidence exists for
hierarchies in the neural correlates of rodent spatial memory, place cells and grid cells, specialized neuron
types discovered in mammalian - and, more recently, human - brains (Ekstrom et al., 2003; Jacobs et al.,
2013), and is shown to play a key role in representing space (Moser et al., 2008). Place cells show increased
activity in small, spatially localized areas, encoding spatial locations within particular spaces - with firing
patterns changing significantly upon switching or changing immediate surroundings (the set of active place
cells is completely different in separate environments). Grid cell firing shows a highly regular, triangular
grid spanning the surface of an environment, independently of its configuration of landmarks, thus encoding
a direction and distance metric.

Both of these spatially relevant neuron types have been observed to show natural hierarchies, with the
granularity of representations (the sizes of the firing fields of individual cells) increasing from dorsal to ventral

24Stored on the same representation, as indicated by the recall order paradigm (i.e. always recalled together)
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poles of the relevant brain areas (Brun et al., 2008; Kjelstrup et al., 2008). Furthermore, fragmentation in
separate parts of an environment has also been observed in electrophysiological recordings of grid cells
(Derdikman et al., 2009; Frank et al., 2000), indicating that instead of a single ‘cognitive map’, there a
manifold of sub-maps are represented in brains (Derdikman & Moser, 2010).

However, the connection between these hierarchical and/or fragmented neural representations, and cog-
nitive representations of map structure, remains largely unexplored. The predictive modelling approach
presented in this paper could facilitate and accelerate research into this connection - after a subject-specific
model has been learned from a small number of environments, subjects do not need to be subjected to
arduous recall sequences (or large numbers of estimations), and can quickly be tested in large numbers of
virtual reality environments in an fMRI.

Models of cognitive map structure could be of interest not only to the cognitive sciences but also to
neighbouring fields. For example, in geographic information science, the insight that both planning times
and estimation accuracies are improved within sub-maps compared to across, together with a subject-general
model (which is good enough for this purpose - see Section 3.5), could help design schematics or transit
maps which are cognitively easy to use for a majority of subjects.

Furthermore, models of human spatial representation are relevant for robotics for the purpose of com-
municating and interacting with humans. This is a rapidly growing area, with over three million25 personal
(non-industrial) service robots sold in 2012; a figure that can be expected to grow with the increasing de-
mands on care robotics due to the rapid ageing of the world population. A model of spatial representation
structure could allow artificial agents to use and understand human-like concepts (for example, translating
latitudes and longitudes to easily understandable expressions like ‘between the shopping area and the uni-
versity buildings’). Approaches to conceptualize spatial representations exist only for indoor robots (Zender
et al., 2008). The present approach, in contrast, is applicable to unconstrained outdoor environments (and
is demonstrated by our results to work in a human-like fashion in over a hundred cities).

Finally, the particular way individual subjects structure their commonly encountered environments de-
pending on past experience and task demands could give insight into computationally more efficient spatial
representations for artificial intelligence (AI). With only around 40 million principal neurons in the human
Hippocampus (Andersen et al., 2006), adults seem to be able to effortlessly store and recall navigation-
relevant spatial details of many dozens of cities and hundreds of square kilometers. Storing a comparable
amount on a trivial AI map representation such as an occupancy grid (Elfes, 1989), with the accuracy rel-
evant for navigation, and including rich perceptual information, is not possible using today’s hardware (let
alone searching through such a vast database in split seconds, as humans are able to do). Human spatial
representation structure could give inspiration for more efficient computational structures for representing
space.

4.2. Alternative empirical approaches to uncovering cognitive map structure

Since humans do not have introspective insight into their own memory structure, uncovering organi-
zation principles of spatial memory is challenging. Several methods have been proposed in the literature
to investigate which reference frames, or imposed structure, might be employed by participants. Of these,
the recall order paradigm was used here, and described in Section 2. Its main shortcomings are the lack
of robustness to outliers due to e.g. lapses of attention (mitigated by the jackknifing procedure), and the
influences of phonological and morphological features of verbally cued items (mitigated by spatial cueing,
as in Experiment 3). Despite these shortcomings, the structures extracted by this method have substantial
influence on various cognitive phenomena, as reported in Section 3.2.

Other experimental approaches for investigating representation structure include judgements of relative
direction (JRD), in which subjects imagine standing at some specified location and heading, are asked to
point to specified objects they have memorized previously. The angular error in JRD seems to be strongly
affected by interobject spatial relations (rather than only depending on a global reference frame), with
better accuracy for judgements aligned with the intrinsic reference frame of an array of objects both in

25According to the World Robotics 2013 Service Robot Statistics, http://www.ifr.org/service-robots/statistics/
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navigation space (McNamara et al., 2003; Meilinger et al., 2014) and in small-scale environments in a room
(Mou & McNamara, 2002). These experiments have utilized object arrays with clear axes of alignment,
either employing a grid-like array (mainly used in small-scale experiments) or making use of single major
roads or paths as intrinsic axes in large-scale surroundings. This setup limits the applicability to general
environments. However, the idea of direction judgement errors induced by changes of reference frame is
generalizable, and has also been used to investigate reference frames of arrays without enforced intrinsic
structure (Han & Becker, 2014; Chen & McNamara, 2011). Because direction errors are smaller within
reference frames than across (Han & Becker, 2014), they could in principle be used to infer representation
structure. The main disadvantage of this approach is the large number of direction estimations required to
distinguish reference frames reliably, due to the large variance of direction errors. Furthermore, the number
of estimations needed for pairwise comparison grows quadratically with the number of objects and / or
frames (none of the cited papers compare more than two frames).

Cognitive map structure impinges on behavioural performance in several ways, most notably including
biasing direction estimation (see above), distance estimation - overestimated across- and underestimated
within representations (Hirtle & Jonides, 1985) -, and priming, i.e. accelerated recognition latencies (McNa-
mara et al., 1989), direction estimation latencies (Han & Becker, 2014), and verifications of spatial relations
(Hommel et al., 2000). All of these biases in errors or response times cause the same difficulties when
trying to infer the exact representation structure for a particular participant - due to large variances, a very
large number of judgements is required to obtain acceptable statistical significance (and the number grows
quadratically with the number of objects). How to mitigate this problem, and which of these metrics have
the smallest variance and thus highest reliability for map structure extraction, as well as whether they all
yield consistent structures as would be expected, remain important questions for future research on cognitive
map structuring.

Assuming either no distractions, or that jackknifing can successfully eliminate the majority of outliers
caused by distractions, the recall order paradigm is able to provide the most deterministic way of inferring
map structure, since it does not rely on comparing distributions of errors (or response times) using signifi-
cance testing. It is also deterministic over time, resulting in very similar structures to the original hierarchies
when re-testing subjects several weeks later (Hirtle & Jonides, 1985). These advantages, together with the
difficulty of obtaining statistically significant results from error / RT patterns with high variances, have
motivated our choice for the recall order paradigm for uncovering the structures modelled in this work.

4.3. Obstacles to predicting cognitive map structure

Our results indicate strong correlations of co-representation probability with distance (Section 3.3),
suggesting that a clustering mechanism underlies map structures, and substantiating the plausibility of our
computational model. However, these conclusions are based on a number of assumptions; and it is possible
that some of them might not be correct. Below, we list some possible obstacles to a predictive model based
on these assumptions.

First, it might be the case that subjects did not learn allocentric spatial representations of their chosen
buildings at all. They might have painstakingly constructed the sketch maps in these experiments from
egocentric representations, for example by imagining egocentric vectors from a particular vantage point, and
estimating distances. If subjects can accurately estimate distances, then this procedure might yield sketch
maps that are better than random, despite the absence of a metric cognitive map (subjects might well do
this, for example, if they have only ever visited their chosen buildings by underground public transport).
However, note that 1) in this case they would be violating the experiment instructions, which state that
they need to know how to walk from any of the buildings to any of the others, and 2) it is much harder to
draw accurate sketch maps when estimating from only one (or few) egocentric vantage points, as opposed
to when a full ‘map’ is accessible allowing the choice of any building or points between buildings as vantage
points.

Second, subject cognitive maps might be unstructured. However, according to the recall order paradigm,
structure is evident from the recalls of a majority of subjects and subject maps. There is also the independent
evidence of several distinct local reference frames, and of local neural representations (see above).
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Figure 13: Possible obstacles to predicting subject cognitive map structures. A: Subjects may not have formed allocentric
cognitive maps. B: Their maps may not have been structured. C: The apparent structure might be due to episodic memories,
emotionally significant events, or other types of non-spatial long-term memory. D: Spurious structure might arise from articu-
latory rehearsal or other working memory strategies, instead of LTM. E: Subjects can list or sketch their buildings on paper,
instead of recalling them from memory, to make the task faster and easier; usually resulting in circular recall sequences. F:
Mind wandering or lapses in attention during recall sequences can cause tree analysis to reconstruct incorrect map structures.

Third, apparent structure might actually arise from non-spatial context effects or long-term memory
events which happened at, or are relevant to, a sub-set of buildings or locations on a subject’s cognitive
map. For example, a subject might cluster together multiple restaurants after having had dinner at all of
them with her significant other. When filling out the recall sequences, she might employ her salient episodic
memories of these dinners to quickly recall these restaurants (and recall them together, which would lead
to the tree analysis algorithm to assume that they are clustered together). It is difficult to exclude such
influences in the real-world experiments, as most buildings familiar to subjects will have some sort of episodic
memories associated with them. How frequent such influences are, and to what extent they distort apparent
map structure, remain questions for future research (one approach might be trying to induce meaningful
episodic memories in the virtual reality experiment, and measure their effects). However, if a majority of
subject map structures had been affected by such context effects (which naturally cannot be modelled with
the described features), reliable prediction would not be possible at all. The observation that a majority of
structures can be predicted suggests that these influences affect a minority of recalled structures.

Fourth, spurious structures could appear in the recall sequences from phonetic or morphological name
similarity in case subjects use articulatory rehearsal to facilitate quick recall; in which case it is a natural
strategy to rehearse and recall similarly sounding object names together. This was indeed a significant
influence in the verbally cued experiments (Experiment 1 and 2), although much weaker than the domi-
nating influence of spatial distance. However, it seems that the effect can be mitigated substantially by
changing the cue modality from verbal to visuospatial cues, which reduces the correlations between pho-
netic/morphological similarity and co-representation probability to insignificant levels (see Figure 6). A
further possible objection related to working memory, that the uncovered structures might be learned dur-
ing the experiment (instead of arising from long-term spatial memory), can be ruled out based on the
approximately uniform distribution of outlier positions (the first few sequences were not more likely to be
outliers than the last few sequences, and no evidence for any learning of map structures during the real-world
experiments could be found in the data - see Supplementary Information for details).

Fifth, in the real-world experiments during which subjects were not observed, they could have lightened
the cognitive load and speeded up the process by either writing down the list of buildings, or sketching a map
on paper, and then reading instead of recalling. Although they were explicitly instructed to do everything
from memory, without looking anything up, an unfortunate side effect of the monetary re-compensation
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is that they have financial incentive to speed up the task (however, (Goodman et al., 2013) have found
no significant difference between the ratio of correct answers between Mechanical Turk participants and
supervised subject from a middle-class urban neighbourhood; although there was a significant difference to
student participants). The proportion of subjects ignoring task instructions can be reduced by ensuring that
most of their other tasks were accepted by requesters on MTurk (in these experiments, they were required
to have at least 95% approval rating on previous jobs to ensure higher data quality). Furthermore, since
the easiest strategy when using a list or a sketch on paper is to always use the same ordering, this should
cause recall sequences to be circular, which can be detected in the data. As would be expected, the rate of
circular recalls is significantly higher for the MTurk subjects (Experiment 3) - 12.6% - than for the student
participants of Experiment 2 - 5.3%. However, they are still a minority of the data, and have been excluded
in the reported analyses (as they lead to a lack of apparent structure).

An additional obstacle to predicting cognitive map structure is the rigidity of the tree analysis algorithm.
Sub-maps are only recognized as such if they occur together, without interruption, in every single recall
sequence. Figure 13 F illustrates an example (revisiting the example from Figure 4) where a distraction,
which interrupts the sequence cued with ‘C’ and causes the participant to continue with ‘B’, for example
because the distraction has reminded him of ‘B’. This causes a substantially different extracted map structure
- were a well-trained predictive model to predict the correct (CRU) - (BM) sub-map structure, it would
show up as an incorrect prediction, and to have a Rand index of 0.6 instead of 1.0. Section 3.5 suggests a
calculation of how many such such incorrectly inferred map structures there might be in our data, based on
the percentage of recognized outliers using jackknifing.

Apart from devising a less simplistic outlier detection method, one possibility to reduce the occurrence
of distractions - for future work - would be timing all recall sequences, and discarding those that exceed a
temporal threshold, forcing participants to re-do the recall.

5. Conclusion

The way spatial memories of open, large-scale environments are structured has remained an unanswered
question. In this paper, we have provided the first attempt at a quantitative answer, hypothesizing that
cognitive map structure arises from clustering in some subject-specific psychological space, including (but
not necessarily limited to) a list of features such as spatial distance, separating boundaries and streets, and
visual and functional similarity, which we have proposed based on past empirical results. As this claim
implies a strong dependence between whether or not objects are stored on the same representations, and
these features, we have examined this dependence using subjects from over a hundred cities worldwide.
We have found that there is a strong correlation between the probability of co-representation of buildings
and their distance in these features (including, perhaps surprisingly, their visual similarities). Furthermore,
we report that despite the noisy inference of subject map structures, they can be predicted correctly in
a majority of cases, after learning subjects’ psychological spaces and applying clustering, using a novel
computational model of cognitive map structuring based on Bayesian models of cognition. Together, these
results provide strong support for the clustering hypothesis, and for the plausibility of a Bayesian model of
cognitive map structuring.
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Abstract

The ability to represent and utilize spatial information relevant to their goals is vital for intelligent
agents. Doing so in the real world presents significant challenges, which have so far mostly been addressed
by robotics approaches neglecting cognitive plausibility; whereas existing cognitive models mostly implement
spatial abilities in simplistic environments, neglecting uncertainty and complexity.

Here, we take a step towards computational software agents capable to form spatial memories in realistic
environments, based on the biologically inspired LIDA cognitive architecture. We identify and address chal-
lenges faced by agents operating with noisy sensors and actuators in a complex physical world, including
near-optimal integration of spatial cues from different modalities for localization and mapping, correcting
cognitive maps when revisiting locations, the structuring of complex maps for computational efficiency,
and multi-goal route planning on hierarchical cognitive maps. We also describe computational mechanisms
addressing these challenges based on LIDA, and demonstrate their functionality by replicating several psy-
chological experiments.

Keywords:
spatial memory, LIDA, cognitive architecture, computational cognitive modeling

1. Introduction

Spatial representations are important for biolog-
ical as well as artificial agents, in order for these
agents to be able to localize, and navigate to, im-
portant objects and places (such as food sources
or shelters). Current computer models for learn-
ing spatial representations either neglect cogni-
tive plausibility in favour of performance, such as
Simultaneous Localization and Mapping (SLAM)
in robotics, or are incapable of running in large-
scale, complex, uncertain environments perceived
through noisy sensors.

Since biological cognition has been shaped by the
structure, constraints, and challenges of the phys-
ical world, we argue cognitive architectures should
take these into account as well. This argument is
in accordance with the roadmap for the BICA chal-

∗tamas.madl@gmail.com

lenge, which also places importance on real-life ca-
pability (Samsonovich, 2012). This paper describes
an effort to take the LIDA (Learning Intelligent Dis-
tribution Agent) cognitive architecture (Franklin
et al., 2014) closer to this goal. We introduce a
novel conceptual and partially implemented, hierar-
chical spatial memory model, inspired by the neural
basis of spatial cognition in brains, and provide a
preliminary interface to realistic environments via
the Robot Operating System (ROS) (Quigley et al.,
2009). We demonstrate these extensions in three-
dimensional simulated environments which include
simulated physics and high-quality graphics, based
on the Player/Stage/Gazebo simulator1. This sim-
ulator presents the same interface to the agent as
real devices, and an agent able to control a robot
in Gazebo is also able to control the same robot in
similar environments in the real world, without any

1http://www.gazebosim.org/
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changes to the control code (Rusu et al., 2007).

This paper describes an effort to extend the LIDA
cognitive architecture by cognitively and biologi-
cally plausible spatial mechanisms, which are capa-
ble of handling the challenges of the real world, as-
sociated with noisy sensors and large-scale environ-
ments. We hypothesize and implement approaches
to tackle the sensory noise, uncertainty, and com-
plexity of realistic environments.

We build on and integrate our previous work
investigating biologically and cognitively plausi-
ble implementations of Bayesian localization (Madl
et al., 2014), Bayesian nonparametric clustering for
map structuring (Madl et al., submitted), and route
planning based on activation gradients2 (Madl
et al., 2013). The method for cognitive map cor-
rection (loop closing) is presented for the first time
below. Although based on established mathemat-
ical tools from robotics, it is - to our knowledge -
the first mechanism for large-scale cognitive map
correction implementable in brains, and consistent
with the replay phenomena observed in the rodent
hippocampus (Carr et al., 2011).

The present work is also (to our knowledge) the
first to provide implementations of these mecha-
nisms in a both cognitively and biologically plau-
sible fashion (fitting behaviour data and imple-
mentable in brains), and integrated within the
same cognitive architecture. Further contribu-
tions include concrete implementations of some
features listed by the BICA Table (Samsonovich,
2010) which until now were only part of conceptual
LIDA, including basic stereo colour vision, a cogni-
tive map, spatial learning, and fusing information
from multiple types of sensors and modalities via
Bayesian update.

1.1. Related work

Apart from the complex perception problem, the
most challenging problems for building spatial rep-
resentations in realistic environments include lo-
calization and mapping under sensory noise, and
correcting incorrect representations when revisit-
ing known locations (loop closing). The robotics
community has developed several solutions to these

2Route planning in navigation space based on activation
gradients has been proposed before (Schölkopf and Mallot,
1995; Burgess et al., 2000), but not on a hierarchy - as it is
in this work - which significantly improves its performance
on multigoal problems.

problems - see (Thrun and Leonard, 2008; Durrant-
Whyte and Bailey, 2006; Bailey and Durrant-
Whyte, 2006; Williams et al., 2009). They have
been designed to be accurate, not cognitively or bi-
ologically plausible, and rely on mechanisms which
are difficult to implement in brains (e.g. many it-
erations performing operations on large matrices).

An exception is the partially connectionist Rat-
SLAM system (Milford et al., 2004) which can learn
robust maps in outdoor environments (Prasser
et al., 2006), and close large loops successfully, if ex-
tended by a sophisticated data association method
(Glover et al., 2010). Parts of it have been argued
to be biologically plausible (Milford et al., 2010).
However, RatSLAM has two disadvantages in the
context of a cognitive model with long-term learn-
ing aiming for plausibility: 1) route planning only
works along established routes (novel detours or
shortcuts have not been demonstrated), 2) learned
spatial information is mapped to a finite structure
(attractor network) of fixed size which cannot be
expanded.

On the other hand, models which emphasize
plausibility - cognitive architectures and plausible
spatial memory models - mostly focus on simplis-
tic simulated environments, usually with no sensory
noise and limited size/complexity. There are a few
neurally inspired spatial memory models which can
deal with a limited amount of uncertainty and noise
(Burgess et al., 2000; Strösslin et al., 2005; Barrera
et al., 2011); but have only been tested in small
indoor environments. See Madl et al. (2015) for a
review.

2. Hypotheses

The LIDA cognitive architecture is based on
Global Workspace Theory (GWT) (Baars, 2002;
Baars and Franklin, 2009), an empirically sup-
ported theory of consciousness (Baars et al., 2013),
and has been argued to be biologically plausible
(Franklin et al., 2014, 2012). Just as the rest of
LIDA can be mapped on to the underlying neuro-
science (Franklin et al., 2012) (although not always
in a one-to-one fashion), it is also the aim of the
model proposed here to have parts which function-
ally correspond to the relevant areas in the brain
representing space. This imposes some functional
and connectivity constraints.

Apart from well-established implications of the
neural representations in these brain areas, includ-
ing the existence of a neural path integrator (Mc-
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Naughton et al., 2006) and of cells representing
current location (hippocampal ‘place cells’ (Moser
et al., 2008)), the spatial memory model presented
here also proposes and requires the following hy-
potheses. They are motivated by computational
challenges facing agents operating in the real world
- the ability to represent uncertainty, to estimate
locations based on uncertain data, and to repre-
sent large amounts of spatial information efficiently
are all essential for a real-life, embodied cognitive
agent. Our choice of computational approaches
(among all possible mechanisms) directly follow
from these hypotheses.

1. Spatial uncertainty is encoded in brains, and
spatial cues are integrated in an approximately
Bayes-optimal fashion. The representation of
uncertainty is a computational requirement
for localization in the real world, given the
unavoidable sensory inaccuracies and noise;
and implies the existence of a mechanism for
combining modalities with different accuracies.
Apart from behavioural evidence substantiat-
ing such a mechanism (Cheng et al., 2007), we
have found neural evidence based on single-
cell recordings of rat hippocampal place cells
in previous work, implying that these cells are
able not only to represent, but also to combine,
information from different modalities and the
associated uncertainties (Madl et al., 2014).

2. Hippocampal replay (Carr et al., 2011) in
awake mammals aids correcting cognitive maps
based on revisited places (see Section 5.6). De-
spite local error correction by integrating spa-
tial information, residual errors are still ac-
cumulating. This can lead to incorrect maps
and to duplicate representations of the same
places. Thus, a mechanism is required that can
close loops, and correct maps, when revisiting
places.

3. Instead of a single unitary and global map,
cognitive maps are fragmented (Derdikman
and Moser, 2010) and hierarchical (Hirtle and
Jonides, 1985), and their structure arises from
clustering, i.e. from a process grouping to-
gether objects which are ‘close’ in some psycho-
logical space. Hierarchical representations are
ubiquitous in computer science and robotics,
given their efficiency in terms of access and
search time and memory use. These advan-
tages are important for storing and accessing
large-scale cognitive maps. We found evidence

for hierarchies and for a clustering mechanism
accounting for them in (Madl et al., submit-
ted).

4. Human multi-goal route planning is consistent
with a simple navigation strategy based on
spreading activation on a recurrently intercon-
nected, hierarchical, grid-like network of nodes
representing locations (see Section 5.2, Supple-
mentary Information, and (Madl et al., 2013)).

3. Spatial memory in brains

Spatial Memory encodes, stores and recalls spa-
tial information about the environment and the self
location of agents (biological or artificial), which
they need to keep track of to successfully navi-
gate. In most mammals, keeping track of position
is achieved by path integration, which refers to up-
dating the agent’s position based on a fixed point
and the movement trajectory (based on informa-
tion from proprioceptive and vestibular systems as
well as sensory flow (Mittelstaedt and Mittelstaedt,
1980; Fortin, 2008)), and is a noisy process accu-
mulating large errors if uncorrected (Etienne et al.,
1996).

Spatial information can be encoded in an egocen-
tric fashion - relative to the agents body and head
direction - or as allocentric representations, rela-
tive to environmental landmarks/boundaries. Here,
we will describe major brain areas associated with
these representations, and their correspondences in
LIDA. For reasons of space, these descriptions will
be very brief. More detail can be found in Madl
et al. (2015).

The ability to recognize objects (e.g. landmarks,
shelters, food sources, ...) is a prerequisite for en-
coding useful spatial memories. The brain areas
involved in this complex functionality include the
sensory cortices and the areas marked (1a) and (1b)
in Figure 1 (Kiani et al., 2007; Davachi et al., 2003;
Winters and Bussey, 2005; Wilson et al., 2013).
The recognition of places is associated with its own
area in the parahippocampal cortex, often called
the Parahippocampal Place Area (PPA) (Epstein,
2008).

Representations of allocentric (world centered) in
mammalian brains include place cells in the hip-
pocampus, which represent spatial locations, firing
only in small spatially constrained areas in an envi-
ronment (ranging from 20cm or less to several me-
ters in diameter, O’Keefe and Burgess, 1996; Kjel-
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strup et al., 2008). They also participate in associ-
ating objects with specific places (Kim et al., 2011;
Manns and Eichenbaum, 2009). In these cells, ‘hip-
pocampal replay’ has been observed - a sequence
of place cells associated with visited locations is
frequently re-activated either in the same order or
in reverse, on rapid (sub-second) timescales; sug-
gested to aid memory consolidation (Carr et al.,
2011). Replay often occurs in reverse at the end
of a run, and forward when anticipating a run,
and contains distance information between the fir-
ing fields (Diba and Buzsáki, 2007). Head direction
is encoded by cells in a network including the An-
terior thalamic nuclei, mamillary body, subiculum
and EC (Taube, 2007). Border cells (Lever et al.,
2009; Solstad et al., 2008) and boundary vector cells
(BVCs) (Burgess, 2008a; Barry et al., 2006) in the
subiculum play a role in representing the distance
(and, for BVCs, the direction) to boundaries in the
environment. Path integration, i.e. maintaining a
location estimate by integrating self-motion signals,
is performed by grid cells in the medial EC (Hafting
et al., 2005; McNaughton et al., 2006).

Together, these cell types form a core part of the
‘cognitive map’, i.e. a map-like allocentric repre-
sentation of the environment (McNaughton et al.,
2006; Burgess, 2008b); and allow animals to keep
track of where they are (place cells and grid cells),
which direction they are facing (head direction
cells), and where boundaries (border cells / BVCs)
and objects (place cells) might be in their vicinity
(see markers 2a-2c in Figure 1).

In addition to allocentric representations, there
are multiple egocentric brain areas encoding spatial
information relative to the animal. This includes
the visual and auditory systems, and the precuneus
((3) in Figure 1), which is the main brain area con-
cerned with egocentric representations and their use
in controlling body and limb-centered actions (Za-
ehle et al., 2007; Kravitz et al., 2011; Vogeley et al.,
2004) (for example, area 5d within the precuneus
encodes ‘reach vectors’ between hand and target).
The retrosplenial cortex (RSC) is involved with con-
verting between egocentric and allocentric represen-
tations (Epstein, 2008). Finally, the basal ganglia
encode guidance behaviours by means of associat-
ing spatial relations relative to the animal with ac-
tions (e.g. turn right at the rock). This is an effec-
tive strategy for well-known routes (Hartley et al.,
2003); however, allocentric representations (‘cogni-
tive maps’) are required in order to be able to plan
novel routes or shortcuts.

4. The LIDA cognitive architecture

Here we will briefly introduce LIDA - see
(Franklin et al., 2014, 2012) for a more detailed
description of LIDA, and its relationship to the
brain. The LIDA cognitive architecture is based on
prevalent cognitive science and neuroscience theo-
ries (e.g. Global Workspace Theory, situated cog-
nition, perceptual symbol systems, ... (Baars and
Franklin, 2009)), and is one of the few cognitive
models which are biologically plausible and to pro-
vide a plausible account for consciousness (Baars
and Franklin, 2009; Baars et al., 2013), attention,
feelings and emotions; and has been partially imple-
mented (Franklin et al., 2014; Goertzel et al., 2010;
Snaider et al., 2011).

Similarly to the action-perception cycle in neuro-
science (Freeman, 2002; Fuster, 2002), LIDA’s cog-
nitive cycle has the purpose of selecting an action
based on percepts (Figure 1 bottom). During each
cycle the LIDA agent senses its environment, stores
information in Sensory Memory and tries to rec-
ognize familiar objects, which are represented as
nodes in Perceptual Associative Memory (PAM).
It associates percepts with memories (declarative,
episodic, spatial) recalled from a Sparse Distributed
Memory (SDM) instance, creating models of the
current situation (CSM) in the Workspace, which
consist of the relevant PAM nodes copied to the
Workspace. Several Structure Building Codelets3

(SBC) - specialized ‘processors’ - operate on the
pre-conscious representations in the Workspace.
Subsequently, the agent decides what part is most
in need of attention (Attention Codelets), which
is moved to Global Workspace. Broadcasting the
most salient4 portion of CSM (bringing it to con-
sciousness) enables the agent to choose actions ap-
plicable in the current situation from Procedural
Memory and to select the action best serving its
goals (Action Selection).

Figure 1 contains a tentative mapping to spatially
relevant modules and mechanisms in LIDA to those
in the brain, described below. It is intended to
provide a starting point for the implementation of
these mechanisms (taking inspiration from the un-

3In LIDA, the term codelet refers to small, special pur-
pose processors or running pieces of software code; and cor-
responds to ‘processors’ in Global Workspace Theory (Baars
and Franklin, 2009)

4We use ‘salient’ as an umbrella term for percepts which
are important, urgent, insistent, novel, threatening, promis-
ing, arousing, unexpected etc.
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Figure 1: Spatially relevant brain areas and LIDA modules. Top: Neural correlates involved in spatial processing.
Modified from (Bird and Burgess, 2008) with permission. Bottom: functionally corresponding modules and processes in LIDA.
Only spatially relevant correspondences are marked here; see Franklin et al. (2014, 2012) for others.
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derlying neural correlates), as well as to clarify
LIDA’s functionality to readers with relevant neuro-
science knowledge by pointing out functional corre-
spondences. This tentative mapping is by no means
intended to suggest that LIDA implements exact
neural mechanisms. Although heavily inspired by
and resting on results from cognitive neuroscience
and psychology, LIDA is a model of minds, not of
brains (Franklin et al., 2012).

5. Towards real-world capable spatial mem-
ory in LIDA

The following subsections describe computa-
tional extensions made to LIDA in order to allow it
to encode, store and recall spatial information ob-
tained from real-world environments. Figure 2 pro-
vides an overview of these extensions. Note that
some of these, such as the LIDA-ROS interface and
the visual recognition mechanism in EPAM (Ex-
tended PAM), do not have correspondents in con-
ceptual LIDA, and are not claimed to plausibly
model minds. Rather, they use already existing
technologies for solving low-level problems (mainly
vision and motor control), which are outside the
scope of this work. Although efforts are under way
to implement these mechanisms in a cognitively
plausible fashion (see e.g. (McCall and Franklin,
2013; Agrawal and Franklin, 2014) for perceptual
learning via cortical learning algorithms, and (Dong
and Franklin, 2015) for action execution), they are
not yet mature enough to facilitate the present ap-
plication scenario.

5.1. Visual recognition and perceptual representa-
tion

LIDA’s PAM contains nodes and links which are
the building blocks of ‘node structures’, which are
similar to and inspired by Barsalou’s perceptual
symbols (Franklin et al., 2014; Barsalou, 1999).
PAM nodes represent higher-level features, such
as objects, categories, relations, events, situations,
feelings/emotions, etc; and are connected by PAM
links, which are weighted and allow passing activa-
tion between the nodes. In the implementations in
this paper, we have extended LIDA’s PAM by an
object recognition system based on a convolutional
neural network (CNN), yielding EPAM (Extended
PAM).

CNNs are a kind of deep learning architecture
designed to process 2D or 3D data such as images

- on which they have led to several breakthroughs
(LeCun et al., 2015) -, and are usually trained by a
gradient descent procedure called backpropagation.
This algorithm has been criticized as not biologi-
cally realistic (Stork, 1989) (although there are ver-
sions of deep learning that can be implemented by
biological neurons (Bengio et al., 2015b)). However,
despite these arguments concerning implementa-
tion, the representations found by state of the art
CNNs trained on real-world images are highly sim-
ilar to those recorded in the inferior temporal (IT)
cortex of human and nonhuman primates (Khaligh-
Razavi and Kriegeskorte, 2014; Yamins et al., 2013).

We have extended PAM by pre-trained CNNs 5

for object recognition (Szegedy et al., 2014) and
road detection (Brust et al., 2015) - see Figure 3.
The top layer (softmax layer) of the former was re-
placed by a classifier trained offline using a dataset
of the buildings used in the Gazebo simulation,
rendered from different perspectives and distances.
(Learning should happen in a development fashion
in LIDA, not offline; but this exceeds the scope of
the current work). Since CNNs perform best on im-
ages containing a single object in the foreground,
having difficulties with clutter, camera images were
first segmented, and object recognition performed
on the individual segments.

5.2. Spatial extensions to LIDA - Overview

As described in Section 3, in brains, hippocampal
place cells encode animals’ current location in the
environment, as well as providing object-place asso-
ciations. Their equivalent in LIDA is implemented
via a special type of PAM nodes, ‘place nodes’, each
of which represent a specific region in the environ-
ment, and which reside in the Workspace (as part of
the Current Situational Model). Place nodes can be
associated with objects perceived to be at that par-
ticular location via PAM links - for example, agents’
self-representation (‘self’ PAM node) can be asso-
ciated with the place node representing their most
likely location (which needs to be updated regu-
larly). They are also initially connected recurrently
to all their neighbours via PAM links. This has
been argued to be a plausible connectivity pattern
of the hippocampus (Moser et al., 2008; Csizmadia
and Muller, 2008; Samsonovich and McNaughton,
1997).

5These CNNs were available from
https://github.com/BVLC/caffe/wiki/Model-Zoo and
https://github.com/cvjena/cn24

6



Figure 2: Extensions to add spatial abilities to LIDA. From the top left, clockwise: the LIDA-ROS interface transmits
image and depth information (from stereo disparity) from the robot’s visual sensors to Sensory Memory (SM). Object recognition
is performed by CNNs in EPAM (Extended PAM), which pass activation to recognized PAM nodes representing objects. These
can be associated with the place nodes corresponding to their most likely location in SpW (Spatial Workspace) in the Workspace
(determined by taking the mean of the samples representing their location probability distributions). Place nodes, links between
them, and object associations constitute ‘cognitive maps’, and are constructed, updated, and organized by various Structure
Building Codelets (SBCs). Place nodes with enough activation to be broadcast consciously can be learned as long-term SDM
representations; and can also recruit route-following behaviours in Procedural Memory and Action Selection, leading to the
execution of a low-level action in Sensory-Motor Memory (SMM), which is transferred to the robot via the LIDA-ROS interface.

Any PAM node in the Workspace representing
currently or recently perceived objects (obstacles,
landmarks, goals, etc.) in LIDA’s Workspace can
be associated via PAM links with spatial locations
represented by place nodes. A node structure com-
prised of such object nodes, association links, and
place nodes together constitute a ‘cognitive map’.
Multiple ‘cognitive maps’ can be used within the
same environment in a hierarchical fashion (there
can be maps and sub-maps on different scales and
resolutions, and relative position and containment
relations between them). This is consistent with
neural and behavioural evidence that the human
cognitive map structured (Derdikman and Moser,

2010) and hierarchical (Hirtle and Jonides, 1985)
(see (Madl et al., submitted) for more extensive lit-
erature and evidence). It should be mentioned that
the regular grid-like pattern of these place nodes,
imposed for computational simplicity, is not biolog-
ically realistic, as no regularities have been found in
the distribution of firing fields of place cells (how-
ever, a regular grid has been observed in the EC).

Although these maps are temporary, created and
updated in the Workspace, they can be stored in the
Spatial Memory module (which can encode trees
and sequences (Snaider and Franklin, 2014)) as
long-term memories if they are salient enough to
be broadcast consciously. This long-term memory

7



Figure 3: Representations in Extended PAM (A-D) in one of the environments recreated in the Gazebo simula-
tor (E). A: Camera image with detected road. B: Depth image from binocular disparity. C. Likely objects from segmentation
(hot colours), recognized by a CNN. D: Perceived road after denoising and projection based on the depth image.

storage mechanism has not been implemented yet.
Cognitive maps are assembled and updated by

structure-building codelets (SBC) in the Workspace
(LIDA’s pre-conscious working memory). Each of
these SBCs addresses a computational challenge as-
sociated with endowing an autonomous agent with
spatial capabilities (see Figure 2):

• the ‘Association SBC’ associates large objects
recognized by EPAM with place nodes, making
use of distance information from stereo dispar-
ity to infer their approximate position and size,

• the ‘Boundary SBC’ detects boundaries in the
Workspace, removing links at the locations of
these boundaries (currently performed at the
boundaries of recognized roads), only leaving
links between traversable places (facilitating
planning),

• the ‘Localization SBC’ is responsible for updat-
ing the link between the Self PAM node and
the place node representing the agents most
likely current position in the environment, us-
ing Bayesian inference to combine spatial cues,

• the ‘Map correction SBC’ corrects the map
(closes the loop) based on revisited locations

(see next section),

• the ‘Map structure SBC’ spawns new cognitive
maps from parts of the current map, based on
the proximity of objects represented on a map,
in a process resembling clustering, and

• the ‘Route plan extraction SBC’ extracts
shortest routes if a goal representation is
present in the Workspace.

5.3. Map structuring

The Map structure SBC processes all place nodes
which have associated objects, and clusters these
objects based on 1) their spatial location, 2) their
functional similarity, and 3) boundaries separat-
ing them; using Bayesian nonparametric cluster-
ing (as described and substantiated experimentally
in (Madl et al., submitted)). Apart from account-
ing for the structure of cognitive maps, Bayesian
nonparametric models has also been successful at
accounting for category learning (Sanborn et al.,
2006) and unifying rational models of categoriza-
tion (Griffiths et al., 2007). This SBC groups to-
gether objects that are close to each other along
the given features (in our case, spatial distance
and functional similarity). The Map structure SBC
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spawns a new cognitive map (sub-map) for each
identified cluster, consisting of the objects in that
cluster and their place nodes; and adjusts the den-
sity of place nodes depending on the area of this
cognitive map (so that large-scale maps contain a
low resolution and small-scale maps a high resolu-
tion place node grid). This process leads to a hi-
erarchy of cognitive maps, a structure suggested to
be employed by human spatial memory (Hirtle and
Jonides, 1985; McNamara et al., 1989; Madl et al.,
submitted).

5.4. Localization and mapping

The Localization SBC is responsible for updat-
ing the agents estimated location after each move-
ment, by linking its Self PAM node with the place
node representing this location; as well as for updat-
ing landmark locations in a similar fashion. Simply
using path integration (odometry) to add up self-
motion signals keeps accumulating errors (Etienne
et al., 1996; Jeffery, 2007). This problem has been
tackled in robotics in the framework of Bayesian
inference, integrating information from odometry
with sensory observations in a statistically optimal
fashion (Thrun and Leonard, 2008). It has been ar-
gued that brains might employ a similar mechanism
(Cheung et al., 2012; Madl et al., 2014).

Probability distributions representing the loca-
tion of the agent, as well as the locations of rec-
ognized objects, are encoded by means of a set of
samples attached to EPAM nodes in the Workspace
and manipulated by the Localization SBC (see Fig-
ure 2). There are strong arguments for the neu-
ral plausibility of sampling-based uncertainty rep-
resentations and inference (Fiser et al., 2010). Af-
ter every movement, the Localization SBC performs
three steps. First, the location estimate of the agent
is moved based on the self-motion signal. Second,
the self-location estimate, and the landmark loca-
tion estimates, are corrected in a Bayesian fashion.
Finally, the links of the nodes representing them
are updated to the place node corresponding to the
best estimate.

These steps correspond to the common imple-
mentation of the Kalman filter (Thrun et al., 2005),
extended version of which are still in use for SLAM
in robotics, where large matrices are used to keep
track of the locations and covariances of all land-
marks (requiring the updating of O(N2) entries at
each movement). Another, computationally more
efficient method (Montemerlo and Thrun, 2007),
with a sampling-based representation of probability

distributions, inspired our solution (together with
evidence that place cell activity spikes can be seen
as samples from a Bayesian posterior (Madl et al.,
2014)).

We begin by formalizing path integration, given
a motion model p(x|m) prescribing how location
changes with a movement. The location at time t
can be inferred based on the most recent movement
mt−1 by integrating out the previous location:

p(xt|m1:t) =

∫
p(xt|xt−1,mt−1)·

p(xt−1|m1:t−1)dxt−1.
(1)

Uncorrected, adding up movements like this
would incur ever-increasing errors (Etienne et al.,
1996). However, we can use Bayes’ theorem to
calculate the posterior location estimate xt−1 of
the previous timestep, corrected by observations
o1, ...,oN ∈ Ot−1 of landmark positions l1, ..., lN ∈
L in that timestep (making use of the conditional
independence of landmark positions given a loca-
tion (Montemerlo and Thrun, 2007)):

p(xt−1|Ot−1, Lt−1,m1:t−1) = γp(xt−1|m1:t−1)·
N∏

j=1

p(lj |ot−1,j ,xt−1),

(2)

where γ is a normalization constant We can use
this corrected posterior instead of the uncorrected
previous path integration estimate p(xt−1|m1:t−1)
in Equation (1), yielding a recursive equation
for corrected location estimation (Montemerlo and
Thrun, 2007):

p(xt|m1:t, O1:t, L) = γ
N∏

j=1

p(lj |ot,j ,xt)·
∫
p(xt|xt−1,mt−1)p(xt−1|Ot−1, L,m1:t−1)dxt−1.

(3)

This recursive location estimation equation can
be implemented by iterating the three mentioned
steps - movement, correction, update -, and by us-
ing rejection sampling to approximate the statisti-
cally optimal posterior in the correction step.

We recently presented evidence that hippocam-
pal place cells are able to perform Bayesian cor-
rection, based on neuronal recordings of several

9



hundred place cells and multiple different environ-
ments, in which the firing fields of these cells cor-
responded to the predictions of a Bayesian cue in-
tegration model (Madl et al., 2014). In the same
paper, we have also suggested how coincidence de-
tection, observed in place cells (Jarsky et al., 2005;
Takahashi and Magee, 2009; Katz et al., 2007), can
implement multiplication required to calculate a
Bayesian posterior, as well as rejection sampling.

The Localization SBC solves Equation 3 in a
manner similar to this coincidence detection mech-
anism in place cells. The Self-location node keeps
track of a number of samples representing the esti-
mated location distribution (however, only the ex-
pected value, i.e. the mean of these samples, is
connected to a place node and can be broadcast
consciously in the model). New samples are gen-
erated (and old samples moved) based on the cur-
rent movement speed v and some Gaussian noise re-
flecting movement errors whenever the agent moves:

sit = st + T (v∆t · N (1,

[
σ2
v 0

0 σ2
ω

]
)), where σv and

σω are linear and angular path integration error pa-
rameters, and T transforms from polar (linear and
angular speed) to Cartesian coordinates. Note that
the self-movement v∆t is itself noisy and inaccu-
rate (the multiplicative Gaussian ensures that the
samples are spread out enough to likely encompass
the unknown true location).

This movement equation alone would accumulate
errors, and spread out samples more and more. To
avoid this, it is corrected in a Bayes-optimal fash-
ion by rejection sampling, i.e. by rejecting (dis-
carding) samples sit inconsistent with current ob-
servations. Specifically, samples are retained with
a probability proportional to the product of distri-
butions representing currently observed landmarks∏N

j=1 p(lj |ot,j ,xt) (see Supplementary Information
in (Madl et al., 2014) for proof that this approxi-
mates the Bayesian posterior location). The most
likely corrected location can subsequently obtained
from the mean of the remaining samples, xt = s′t.
The Localization SBC then updates a link between
the Self-location node and the correct place node
corresponding to xt.

Analogously, the same rejection sampling mech-
anism can also be used to keep track of most likely
landmark locations, implementing:

p(lj |ot,j ,xt) = γp(ot,j |lj ,xt)p(lj |ot−1,j ,xt−1),
(4)

under the assumption that the data association
problem (the question which landmark the mea-
surements o belong to) can be solved accurately
using the CNN described above.

The movement step (path integration) has been
shown to be performed by grid cells in the entorhi-
nal cortex (McNaughton et al., 2006), and the cor-
rection step by place cells (Madl et al., 2014). Fi-
nally, we have argued that phase resetting observed
in grid cells can implement the update step, com-
pleting the localization cycle. Based on the observa-
tion that it partially accounts for single-cell record-
ing data in multiple environments (Madl et al.,
2014), and that it can be implemented as a biologi-
cal neural network in a straightforward fashion, we
think this kind of Bayesian correction constitutes a
plausible model of local spatial error correction.

Figure 4: Approximate Bayesian cue integration in
spiking neurons. Calculating the posterior probability dis-
tribution of the current location (equation (2)) requires mul-
tiplying a prior location distribution from path integration
(represented by grid cells) with likelihood distributions from
measurements of objects or boundaries (here represented by
a border cell). Each spike can be seen as a sample from
a probability distribution. If the place cell receiving input
from the grid and border cells performs coincidence detec-
tion, which can be seen as approximate multiplication or
rejection sampling (Madl et al., 2014), yielding an approx-
imate Bayesian posterior, and representing the associated
uncertainty via the size of its firing field. A Bayesian model
can account for hippocampal place field sizes in behaving
rats. (Figure adapted from (Madl et al., 2014)).

5.5. Route planning

The Route plan extraction SBC creates PAM
node structures representing the shortest path to
the agents current goal, if such a goal is currently
present in the Workspace; leveraging the recur-
rently interconnected place node network constitut-
ing cognitive maps. This kind of network facilitates
a very simple path planning mechanism (Figure 5).
Assuming that every goal location G passes acti-
vation through the network, the distance to the
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goal can be decreased by moving to the adjacent
neighbour node with the highest activation. If the
nodes representing the locations of possible obsta-
cles are connected with zero or near-zero weights,
this mechanism can implement obstacle avoidance
as well as path planning. Crucially, this activation-
based planning mechanism operates on a hierar-
chy of ‘cognitive maps’, rather than on a single
level. We argue that this allows better solutions of
multi-goal navigation problems such as the travel-
ling salesman problem. The evaluation of this plan-
ning mechanism against human data was briefly de-
scribed in (Madl et al., 2013) (for details see the
Supplementary Information).

Figure 5: Route planning on recurrently intercon-
nected place nodes. A: Single goal routes can be obtained
by following an activation gradient to a goal. B: Obstacle
avoidance can be implemented by setting connection weights
to zero near boundaries (red lines). C: On a flat grid, fol-
lowing activation gradients can lead to sub-optimal paths
for multi-goal navigation. D: However, when operating on a
hierarchy - planning rough, low-resolution routes first, and
then refining them on higher resolution maps -, this mecha-
nism can yield near-optimal solutions.

5.6. Loop closing - fixing previously learned maps

If uncorrected, accumulating path integration er-
rors eventually render learned spatial representa-
tions useless; a problem necessitating the use of
other modalities for map learning. Integrating spa-
tial information in an approximately statistically
optimal (Bayesian) fashion, as described above,
helps correct local maps. However, only the agent’s
current location and the locations of currently per-
ceived objects are updated with our procedure.

When traversing large cycles (loops) in an envi-
ronment and returning to a previously visited lo-
cation, the remaining errors still accumulate and
prevent this loop to be represented correctly, caus-
ing multiple representations of the same places (of
subsequently revisited places) - see Figure 6.

Therefore, a mechanism is needed to correct
the representation of locations encountered during
loops (such a correction is called ‘loop closure’ or
‘closing the loop’ in robotics literature (Williams
et al., 2009)). This section outlines a biologically
plausible solution to this problem, and its relation
to phenomena observed in hippocampal neurons.
This solution is also used by the Map correction
SBC to correct errors in learned cognitive maps.

Although the problem of accumulating errors
and the resulting need to correct maps with sen-
sory information has been identified early in spa-
tial modelling literature (McNaughton et al., 1996),
the question how brains might ‘close the loop’
has received very little attention, and no plau-
sible mechanisms have been proposed to the au-
thors’ knowledge. The large majority of robotics
solutions to this problem require many iterations
over huge matrices containing information regard-
ing every position ever visited (Thrun and Leonard,
2008; Durrant-Whyte and Bailey, 2006; Bailey and
Durrant-Whyte, 2006; Williams et al., 2009), and
are thus neurally implausible. However, a proba-
bilistic perspective on this problem can still help
find a plausible candidate algorithm, consistent
with hippocampal replay as the correction mech-
anism, which we summarize below.

First, let us assume that it is sufficient to correct
the route taken during the loop. Local, currently
perceived landmark positions are corrected sepa-
rately as described above. When performing large-
scale loop closing, our scheme applies the same
correction to a position and the local landmarks
around it6. We also make the assumption that cor-
rection only concerns position representations and
not angular representations, since there is neuronal
evidence for the former but not the latter (replay
of encountered information happens in place cells,
but has not been observed for direction-sensitive
neurons such as head-direction cells in the post-
subiculum (Brandon et al., 2012)).

6Unlike the strong evidence for hippocampal replay con-
cerning place cells representing recently visited locations, it
is unclear whether cells associated with landmarks are also
‘replayed’. Therefore, we forgo separate landmark correction
in loops for now.
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The available information includes the path X
consisting of estimated, recently visited locations
x0, ...,xm ∈ X, and a set of constraints c1, ...cm ∈
C specifying how far two locations should be from
each other - this includes distances from the path
integration system for subsequent locations, and
equivalence constraints (with zero distance) when
revisited places are recognized. We will temporarily
assume simultaneous access to all path integration
constraints, and will drop this implausible require-
ment later. Each constraint between two locations
is represented as a Gaussian with the measured dis-
tance ci as the mean, and the associated uncer-
tainty represented by the covariance Si (e.g. path
integration is inexact - high uncertainty; but a rec-
ognized revisited place is at the same location - low
uncertainty). The correct path is the one that is
most consistent with all known constraints (known
distances between the locations); or, from a prob-
abilistic perspective, the one that maximizes the
conditional probability of the locations constitut-
ing the path, given the constraints7:

P (X|C) ∝
m∏

i=1

P (ci|X). (5)

Since each constraint is represented as a Gaus-
sian over the distance between a pair of locations
ai and bi, P (ci|X) ∝ N (xa − xb; ci, Si), and the
conditional probability is

P (X|C) ∝
m∏

i=1

exp−
(1

2
||xa − xb − ci||Si

)
. (6)

We will denote the discrepancy between the con-
straint i and the difference between corrected lo-
cations ai and bi as di = xa − xb − ci. Under
ideal conditions without noise and errors, all di
would be zero; but in realistic environment there
will be discrepancies between estimated and mea-
sured differences. The ‘best’ path estimate maxi-
mizes P (X|C), or equivalently minimizes its nega-
tive logarithm −logP (X|C) (minimizes the discrep-
ancies):

7In robotic SLAM solutions, the path likelihood would
also depend on all landmark observations. We omit them
here because our loop closing procedure updates each posi-
tion along with the path together with its local landmarks,
applying the same translation to both, which renders the
observation conditionals constant; once again sacrificing ac-
curacy for plausibility.

XML = arg max
X

P (X|C) = arg min
X

m∑

i=1

||di||S−1
i

(7)
Equation (7) can be written in matrix form and

solved via Gauss-Seidel iteration, in a way that only
requires a few alternating forward and backward
passes over the path (see Supplementary Informa-
tion); however, alternating replay has not been ob-
served in the hippocampus.

Fortunately, there is a more plausible solu-
tion which can be implemented neurally. It has
been argued that Spike-Time Dependent Plasticity
(STDP) can implement gradient descent in biolog-
ical neurons (Bengio et al., 2015a,b). Our start-
ing point is the stochastic gradient descent-based
maximization of P (X|C) described in (Olson et al.,
2006), which suggests the following gradient with
respect to constraint i:

∆X ≈ α(JS−1J)−1JT
i S
−1
i di, (8)

where α is a learning rate, J is the full Jaco-
bian of all constraints with respect to the locations,
and Ji the Jacobian of constraint i. Because con-
straints apply to locations incrementally (with zero
sensory errors, the correct current location would
be xc =

∑
i ci), the Jacobian is also incremental,

spreading out the discrepancy di = (xa − xb − ci)
over an entire loop (by means of having a struc-
ture similar to the incidence matrix). This means
the Jacobian need not be explicitly computed or
represented. For a given loop closed by ci with un-
certainty Si, let us assume unchanging path inte-
gration uncertainties SP for each movement within
the loop, and introduce a loop precision param-
eter Ai specifying the uncertainty of the current
loop closure in relation to that of path integration,
Ai = Si/SP . The correction applied to any single
location xj visited after the recognized previous lo-
cation ai (i.e. if j > ai) thus becomes:

∆xj ≈ αdi

∑j
k=a+1 S

−1
i∑min(j,b)

k=a+1 S−1P

= αAidipj , (9)

where pj = (min(j, bi) − ai − 1)/(bi − ai − 1)
denotes how far xj lies along the loop, with 0 ≤
pj ≤ 1.

Conveniently, we can neglect path integration
constraints - they are already included in the path
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Figure 6: Loop closing performed by the Map cor-
rection SBC. Correcting estimated positions along a path
when re-visiting a known place (large green dot), after
traversing a large loop. Recognizing this place yields the
knowledge that current estimated location xb should equal
xa; and the correction di based on the discrepancy is ap-
plied proportionally to all visited places along the loop. This
backward correction is consistent with hippocampal replay.

X, and, since they concern subsequent locations
with b = a + 1, they lead to ∆x = 0 according
to equation (9). The updates only concern loop
closing constraints. Given that the distance to the
same place when re-visiting it is zero, di = xa−xb.
Furthermore, we don’t have to re-activate all lo-
cations ever visited; only those in the loop. The
ensuing correction mechanism is simple (and eas-
ily implementable with neurons): when a loop clo-
sure is detected, the locations along the loop are
iteratively corrected with the discrepancy between
estimated and observed location according to equa-
tion (9). The iteration proceeds backwards, start-
ing at the estimated location at the re-visited place,
and has to run several times to approximate a near-
optimal solution. This is consistent with backward
replay of visited locations in hippocampal place
cells (Carr et al., 2011), with the presence of dis-
tances between locations encoded in such replays
(Diba and Buzsáki, 2007), and with the observation
that replay happens significantly more often than
the number of times the animal re-visits places.

The described procedure is carried out regularly
by the Map correction SBC after a loop closure
has been detected (when recognizing an already en-
countered landmark via the CNN in EPAM). It sim-
ply spreads out the discrepancy di proportionally
along the place nodes representing the traversed

loop, according to Equation (9) (see Figure 6). The
Map correction SBC also corrects the positions of
encountered buildings, and of the traversed road,
stored on the cognitive map (i.e. the same correc-
tion is applied to building nodes and road nodes as
to the xj closest to them). The location of a part
of a road or that of a building is corrected by link-
ing the node representing it with the correct place
node.

Apart from behavioural predictions regarding
cognitive map accuracy, validated in the next sub-
section, and the prediction that hippocampal replay
(Carr et al., 2011) might (also) serve the purpose
of correcting cognitive maps, this suggested mecha-
nism also yields a quantitative prediction on a cellu-
lar level, assuming that the synaptic strength place
cells depends on the distance dpf between their
place fields. For example, (Csizmadia and Muller,
2008) suggest that the synaptic weight converges
to S = exp(−kdpf ). which for small kdPF can
be approximated by S = 1 − kdpf . Furthermore,
STDP implies a weight change proportional to the
change in post-synaptic voltage potential (Bengio
et al., 2015b). Under these assumptions, our sug-
gested cognitive map correction mechanism implies
that after re-visiting a location, during subsequent
hippocampal replay, for a pair of place cells which
are sufficiently close together for the approximation
to hold, changes in post-synaptic voltage potential
will be approximately proportional to the correc-
tion magnitude ∆x, i.e. to the amount the place
field has shifted during replay. It is clear from em-
pirical data that place fields shift after re-visiting lo-
cations in an environment (Mehta et al., 2000), and
that backward replay contains distance information
between place fields (Diba and Buzsáki, 2007). We
leave the verification of the mentioned prediction
for future work.

6. Results

This section reports results obtained by LIDA
agents with the extensions described above, repro-
ducing data from psychological experiments. These
experiments were chosen to compare the agent’s
spatial estimation accuracies, and cognitive map
structures, with human subjects.

Instead of free exploration, the routes in the
experiments below were pre-programmed into the
agents’ long term memory, by storing the turns to
be taken in the form of schemes (percept-action
mappings) in Procedural Memory, for the following
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reasons. In Experiment 1, closely reproducing the
participant trajectories (as opposed to exploration
behaviour) was crucial to modelling accumulating
uncertainty. In Experiments 2 and 3, subjects’ ex-
ploration trajectories in their home towns were not
known (having happened years or decades before
the experiment). Furthermore, exploring environ-
ments on the scale of the participant cities modelled
in Experiment 2 in tractable timeframes would have
required an intelligent exploration strategy, which
we have not implemented yet in LIDA. Therefore,
the agent was given the turns it should take.

All other information came from noisy sensors,
and no ground truth information was provided to
the agents, which makes the experiments suitable
for evaluating spatial representation accuracy.

6.1. Experiment 1 - Localization and cue integra-
tion

Figure 7: Position errors and standard deviations in
the cue integration experiment by Nardini et al.
(2008). A. Mean RMSE (root mean squared errors) of
participants, and mean SD (standard deviation), for the re-
sponses of human subjects (green) and the agent (blue), re-
spectively. B. The experiment environment. Participants
had to pick up objects 1-3 in order, and then replace ob-
ject 1. The colored objects (moon, star, lightning) are the
landmarks. (From Nardini et al. (2008)). C. Mean SD of
participants (green) and the agents (blue)

In order to substantiate the Bayesian localization
and cue integration mechanism, we have replicated
a behavioural experiment Nardini et al. (2008) in-
vestigating the integration of self-motion and sen-

sory information in location estimation. In this ex-
periment, subjects were asked to pick up a series of
glowing objects in a dark room and to subsequently
return the first object to its original location. In the
self-motion+landmarks condition, there were three
landmarks available for orientation, and subjects
were not disoriented - both sources of information
were available. In the landmarks condition, sub-
jects were disoriented by turning to deprive them
of orientation information. In the self-motion con-
dition, subjects were not disoriented but the land-
marks were turned off.

To simulate this experiment, the same environ-
mental layout (with accurate object distances) was
reproduced in a simulation. The agent performed
Bayesian localization as described above. Distance
estimation inaccuracies were set to 3%, which is
a frequently observed distance estimation error in
virtual (Waller, 1999; Murgia et al., 2009) and real
environments (Plumert et al., 2005; Grechkin et al.,
2010). The two remaining noise parameters (lin-
ear and angular self-motion estimation inaccura-
cies) were adjusted to fit the data using coordinate
descent. Path integration errors were modelled by
multiplicative 1-mean Gaussian noise, since vari-
ability in human odometry is proportional to mag-
nitude (Durgin et al., 2009). Figure 7 shows the
simulation results, which are consistent with the
empirical data for adult subjects.

6.2. Experiment 2 - Cognitive map accuracy (real
environments)

Here we replicate map accuracies of Experiment
3B in (Madl et al., submitted), in which partici-
pants were asked to pick 8 very familiar buildings
(such that they knew how to walk from any one
to the other), and to create a sketch map by in-
dicating their positions on a featureless canvas on
a computer. Sketch maps were linearly translated,
rotated and scaled to fit the correct map best us-
ing Procrustes analysis (Gower, 1975). Each sub-
ject produced three sketch maps, of which those not
significantly better than random guessing were ex-
cluded. Sketch maps spanning an area larger than
4km2 were also excluded to reduce computational
load. This left 19 participants, and a total of 28
different maps (environments) in 21 different cities.
To reduce computational load, only the roads (and
adjacent buildings) were modelled which allowed
getting from one of these buildings to the other,
i.e. which lay along one of the

(
8
2

)
= 28 shortest

routes between two respective buildings for each
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map. These roads and buildings were recreated
with the correct real-world distances in the sim-
ulation (geospatial information was obtained via
Google Maps API8), yielding multiple routes sev-
eral kilometers long.

Figure 8 compares the errors of the maps learned
by the agent with human sketch maps, after ad-
justment of the linear and angular path integra-
tion noise parameters by coordinate descent. Map
errors are measured as the sum of squared errors
(SSE) between the correct geographical building lo-
cations, and the locations estimated by the partici-
pants / by the model. Unlike the model predictions,
which are already in the correct reference frame, hu-
man data is linearly translated, rotated and scaled
first to fit the correct map. Errors averaged over
all maps are 1.07km2 (σ = 0.85) for humans, and
1.08km2 (σ = 1.39) for the model, and the model
errors correlate with human errors with rm,h = 0.80
(p = 2.42 ∗ 10−7), with a coefficient of determina-
tion (proportion of explained variance) of R2 = 0.60
which suggests that the model explains the major-
ity of the variance in human map error data.

Note that this model only uses the eight build-
ings the participant indicated as being very familiar
to recognize having revisited a place and to correct
maps. Along routes of this size, humans can pre-
sumably re-identify more than these eight places.
Even in areas without salient landmarks, a match-
ing visual sequence while walking can trigger a feel-
ing of familiarity. We will implement this kind of
episodic sequence-based place recognition in future
work.

7. Conclusion

In order to tackle challenges posed by noisy sen-
sors and complex, uncertain environments, we have
extended LIDA by CNN-based perception, and
by mechanisms for learning and correcting cogni-
tive maps facilitating navigation. These include
novel reinterpretations of coincidence detection in
place cells as approximate Bayesian cue integra-
tion, and hippocampal replay as cognitive map cor-
rection; and suggested computational and algorith-
mic models of these phenomena, consistent with
the ‘Bayesian brain’ paradigm (Knill and Pouget,
2004). We have also compared spatial represen-
tation accuracies to human subjects. Although a

8https://developers.google.com/maps/

large number of issues remain to be solved for real-
world-capable autonomous agents (including de-
velopmental learning of perceptual representations
and affordances, visual place recognition, long-term
spatial and episodic memories, transferring learned
spatial knowledge and expectations between envi-
ronments, and spatial reasoning, to name just a
few), we believe these extensions provide a first step
towards a cognitive architecture combining biolog-
ical plausibility and real-world functionality.
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Diba, K., Buzsáki, G., 2007. Forward and reverse hippocam-
pal place-cell sequences during ripples. Nature Neuro-
science 10, 1241–1242.

Dong, D., Franklin, S., 2015. A new action execution module
for the learning intelligent distribution agent (lida): The
sensory motor system. Cognitive Computation , 1–17.

Durgin, F.H., Akagi, M., Gallistel, C.R., Haiken, W., 2009.
The precision of locomotor odometry in humans. Experi-
mental Brain Research 193, 429–436.

Durrant-Whyte, H., Bailey, T., 2006. Simultaneous local-
ization and mapping: part i. Robotics & Automation
Magazine, IEEE 13, 99–110.

Epstein, R.A., 2008. Parahippocampal and retrosplenial con-
tributions to human spatial navigation. Trends in Cogni-
tive Sciences 12, 388–396.

Etienne, A.S., Maurer, R., Sguinot, V., 1996. Path inte-
gration in mammals and its interaction with visual land-
marks. Journal of Experimental Biology 199, 201–9.

Fiser, J., Berkes, P., Orbán, G., Lengyel, M., 2010. Statis-
tically optimal perception and learning: from behavior to
neural representations. Trends in Cognitive Sciences 14,
119–130.

Fortin, N., 2008. Navigation and episodic-like memory in
mammals. Elsevier. volume 1. pp. 385–418.

Franklin, S., Madl, T., D’Mello, S., Snaider, J., 2014. Lida:
A systems-level architecture for cognition, emotion, and
learning. Autonomous Mental Development, IEEE Trans-
actions on 6, 19–41. doi:10.1109/TAMD.2013.2277589.

Franklin, S., Strain, S., Snaider, J., McCall, R., Faghihi, U.,
2012. Global workspace theory, its lida model and the
underlying neuroscience. Biologically Inspired Cognitive
Architectures .

Freeman, W.J., 2002. The limbic action-perception cycle
controlling goal-directed animal behavior. Neural Net-
works 3, 2249–2254.

Fuster, J.M., 2002. Physiology of executive functions: The
perception-action cycle. Principles of Frontal Lobe Func-
tion , 96–108.

Glover, A.J., Maddern, W.P., Milford, M.J., Wyeth, G.F.,
2010. Fab-map+ ratslam: appearance-based slam for mul-
tiple times of day, in: 2010 IEEE International Conference
on Robotics and Automation, IEEE. pp. 3507–3512.

Goertzel, B., Lian, R., Arel, I., de Garis, H., Chen, S., 2010.
A world survey of artificial brain projects, part ii: Biolog-
ically inspired cognitive architectures. Neurocomputing
74, 30–49.

Gower, J.C., 1975. Generalized procrustes analysis. Psy-
chometrika 40, 33–51.

Grechkin, T.Y., Nguyen, T.D., Plumert, J.M., Cremer, J.F.,
Kearney, J.K., 2010. How does presentation method and
measurement protocol affect distance estimation in real
and virtual environments? ACM Transactions on Applied
Perception 7, 26.

Griffiths, T.L., Canini, K.R., Sanborn, A.N., Navarro, D.J.,
2007. Unifying rational models of categorization via the
hierarchical dirichlet process, in: Proceedings of the 29th
annual conference of the cognitive science society, pp. 323–
328.

Hafting, T., Fyhn, M., Molden, S., Moser, M., Moser, E.,
2005. Microstructure of a spatial map in the entorhinal
cortex. Nature 436, 801–806.

Hartley, T., Maguire, E.A., Spiers, H.J., Burgess, N., 2003.
The well-worn route and the path less traveled: distinct
neural bases of route following and wayfinding in humans.
Neuron 37, 877–888.

Hirtle, S., Jonides, J., 1985. Evidence of hierarchies in cog-
nitive maps. Memory & Cognition 13, 208–217.

Jarsky, T., Roxin, A., Kath, W.L., Spruston, N., 2005.
Conditional dendritic spike propagation following dis-
tal synaptic activation of hippocampal CA1 pyramidal
neurons. Nature Neuroscience 8, 1667–1676. URL:
http://www.ncbi.nlm.nih.gov/pubmed/16299501.

Jeffery, K.J., 2007. Self-localization and the entorhinal-
hippocampal system. Current Opinion in Neurobiology
17, 684–91. doi:10.1016/j.conb.2007.11.008.

Katz, Y., Kath, W.L., Spruston, N., Hasselmo, M.E., 2007.
Coincidence detection of place and temporal context in
a network model of spiking hippocampal neurons. PLoS
Computational Biology 3, e234.

Khaligh-Razavi, S., Kriegeskorte, N., 2014. Deep supervised,
but not unsupervised, models may explain it cortical rep-
resentation. PLoS Computational Biology 10, e1003915.

Kiani, R., Esteky, H., Mirpour, K., Tanaka, K., 2007. Ob-
ject category structure in response patterns of neuronal
population in monkey inferior temporal cortex. Journal
of Neurophysiology 97, 4296–4309.

Kim, J., Delcasso, S., Lee, I., 2011. Neural correlates of
object-in-place learning in hippocampus and prefrontal
cortex. The Journal of Neuroscience 31, 16991–17006.

Kjelstrup, K.B., Solstad, T., Brun, V.H., Hafting, T., Leut-
geb, S., Witter, M.P., Moser, E.I., Moser, M.B., 2008.
Finite scale of spatial representation in the hippocampus.
Science 321, 140–143.

17



Knill, D.C., Pouget, A., 2004. The Bayesian brain:
the role of uncertainty in neural coding and com-
putation. Trends in Neurosciences 27, 712–9.
doi:10.1016/j.tins.2004.10.007.

Kravitz, D.J., Saleem, K.S., Baker, C.I., Mishkin, M., 2011.
A new neural framework for visuospatial processing. Na-
ture Reviews Neuroscience 12, 217–230.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning.
Nature 521, 436–444.

Lever, C., Burton, S., Jeewajee, A., O Keefe, J., Burgess, N.,
2009. Boundary vector cells in the subiculum of the hip-
pocampal formation. Journal of Neuroscience 29, 9771–7.

Madl, T., Chen, K., Montaldi, D., Trappl, R., 2015. Compu-
tational cognitive models of spatial memory in navigation
space: A review. Neural Networks 65, 18–43.

Madl, T., Franklin, S., Chen, K., Montaldi, D.,
Trappl, R., 2014. Bayesian integration of infor-
mation in hippocampal place cells. PLoS ONE ,
e89762doi:10.1371/journal.pone.0089762.

Madl, T., Franklin, S., Chen, K., Trappl, R., 2013. Spa-
tial working memory in the lida cognitive architecture, in:
Proceedings of the International Conference on Cognitive
Modelling.

Madl, T., Franklin, S., Chen, K., Trappl, R., Montaldi, D.,
submitted. Exploring the structure of spatial representa-
tions. Cognitive Processing .

Manns, J.R., Eichenbaum, H., 2009. A cognitive map for
object memory in the hippocampus. Learning & Memory
16, 616–624.

McCall, R., Franklin, S., 2013. Cortical learning algorithms
with predictive coding for a systems-level cognitive archi-
tecture, in: Second Annual Conference on Advances in
Cognitive Systems Poster Collection, pp. 149–66.

McNamara, T.P., Hardy, J.K., Hirtle, S.C., 1989. Subjective
hierarchies in spatial memory. Journal of Experimental
Psychology: Learning, Memory, and Cognition 15, 211.

McNaughton, B., Barnes, C., Gerrard, J., Gothard, K.,
Jung, M., Knierim, J., Kudrimoti, H., Qin, Y., Skaggs,
W., Suster, M., et al., 1996. Deciphering the hippocampal
polyglot: the hippocampus as a path integration system.
The Journal of Experimental Biology 199, 173–185.

McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I.,
Moser, M.B., 2006. Path integration and the neural basis
of the ’cognitive map’. Nature Reviews. Neuroscience 7,
663–78. doi:10.1038/nrn1932.

Mehta, M.R., Quirk, M.C., Wilson, M.A., 2000. Experience-
dependent asymmetric shape of hippocampal receptive
fields. Neuron 25, 707–715.

Milford, M.J., Wiles, J., Wyeth, G.F., 2010. Solving nav-
igational uncertainty using grid cells on robots. PLoS
Computational Biology 6, e1000995–1.

Milford, M.J., Wyeth, G.F., Rasser, D., 2004. Ratslam:
a hippocampal model for simultaneous localization and
mapping, in: 2004 IEEE International Conference on
Robotics and Automation, IEEE. pp. 403–408.

Mittelstaedt, M., Mittelstaedt, H., 1980. Homing by path
integration in a mammal. Naturwissenschaften 67, 566–
567.

Montemerlo, M., Thrun, S., 2007. FastSLAM: A scalable
method for the simultaneous localization and mapping
problem in robotics. volume 27. Springer.

Moser, E.I., Kropff, E., Moser, M.B., 2008. Place
cells, grid cells, and the brain’s spatial representa-
tion system. Annual review of neuroscience 31, 69–89.
doi:10.1146/annurev.neuro.31.061307.090723.

Murgia, A., Sharkey, P.M., et al., 2009. Estimation of dis-
tances in virtual environments using size constancy. The
International Journal of Virtual Reality 8, 67–74.

Nardini, M., Jones, P., Bedford, R., Braddick, O., 2008. De-
velopment of cue integration in human navigation. Cur-
rent Biology 18, 689–693.

O’Keefe, J., Burgess, N., 1996. Geometric determinants of
the place fields of hippocampal neurons. Nature 381, 425–
428.

Olson, E., Leonard, J., Teller, S., 2006. Fast iterative align-
ment of pose graphs with poor initial estimates, in: Pro-
ceedings 2006 IEEE International Conference on Robotics
and Automation, IEEE. pp. 2262–2269.

Plumert, J.M., Kearney, J.K., Cremer, J.F., Recker, K.,
2005. Distance perception in real and virtual environ-
ments. ACM Transactions on Applied Perception 2, 216–
233.

Prasser, D., Milford, M., Wyeth, G., 2006. Outdoor simul-
taneous localisation and mapping using ratslam, in: Field
and Service Robotics, Springer. pp. 143–154.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., Ng, A.Y., 2009. Ros: an open-
source robot operating system, in: ICRA Workshop on
Open Source Software, p. 5.

Rusu, R.B., Maldonado, A., Beetz, M., Gerkey, B., 2007.
Extending player/stage/gazebo towards cognitive robots
acting in ubiquitous sensor-equipped environments, in:
ICRA Workshop for Networked Robot Systems.

Samsonovich, A., McNaughton, B.L., 1997. Path integration
and cognitive mapping in a continuous attractor neural
network model. The Journal of Neuroscience 17, 5900–
5920.

Samsonovich, A.V., 2010. Toward a unified catalog of im-
plemented cognitive architectures. Biologically Inspired
Cognitive Architectures 221, 195–244.

Samsonovich, A.V., 2012. On a roadmap for the bica chal-
lenge. Biologically Inspired Cognitive Architectures 1,
100–107.

Sanborn, A.N., Griffiths, T.L., Navarro, D.J., 2006. A more
rational model of categorization, in: Proceedings of the
28th annual conference of the cognitive science society,
pp. 726–731.

Schölkopf, B., Mallot, H.A., 1995. View-based cognitive
mapping and path planning. Adaptive Behavior 3, 311–
348.

Snaider, J., Franklin, S., 2014. Modular composite represen-
tation. Cognitive Computation 6, 510–527.

Snaider, J., McCall, R., Franklin, S., 2011. The lida frame-
work as a general tool for agi, in: Artificial General Intel-
ligence. Springer, pp. 133–142.

Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B.,
Moser, E.I., 2008. Representation of geometric bor-
ders in the entorhinal cortex. Science 322, 1865–8.
doi:10.1126/science.1166466.

Stork, D.G., 1989. Is backpropagation biologically plausi-
ble?, in: Neural Networks, 1989. IJCNN., International
Joint Conference on, IEEE. pp. 241–246.
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Zaehle, T., Jordan, K., Wüstenberg, T., Baudewig, J.,
Dechent, P., Mast, F.W., 2007. The neural basis of the
egocentric and allocentric spatial frame of reference. Brain
research 1137, 92–103.

19



Chapter 7

Discussion

In Chapters 4-6 above, we have argued for the necessity of probabilistic mechanisms in
spatial cognition when faced with a complex, uncertain environment perceived through
noisy sensors. We have presented evidence that

1. hippocampal place cells represent spatial uncertainty,

2. they can perform approximate Bayesian inference,

3. the representations by recently active place cells can be corrected near-optimally
through reverse replay when revisiting a place, and

4. spatial representation structure arises from clustering under a metric defined
across features including distance and visual and functional similarity.

We have also integrated these suggested probabilistic mechanisms into LIDA, and
embodied the resulting cognitive architecture in a robotic simulation. In this Chapter,
we discuss the abilities, shortcomings, and missing functionalities of our models, and
their consistency with related empirical findings, from a cognitive science perspective.

7.1 Other mechanisms and representations involved in
spatial navigation

Tables 7.1 and 7.2 summarize the processes and representations involved in spatial
navigation in biological cognition. The first columns provide overviews of these mech-
anisms and representations, based on Figure 1 in (Wolbers & Hegarty, 2010). The sec-
ond column indicates the corresponding mechanism in our final LIDA-based model, as
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described in Chapter 6. The rightmost column highlights some major elements missing
from the models presented here but required for spatial navigation.

↓Mechanism In our model Not implemented
Spatial computations

Space perception
Limited (depth from

stereo disparity*)
Estimating size, shape,

movement, orientation, ...

Self-motion perception Surrogate: odometry*
Motor efference, proprio-

ceptive & vestibular senses

Translation btw. ego- and
allocentric reference frames

Limited: Perspective
projection via
homography*

Plausible translation
mechanism

Computing directions and
distances to unseen goals

Route plan SBC
(following gradient

on a hierarchical grid)

Explicit direction
estimation, systematic

errors in estimation
Imagining shifts in
spatial perspective - Sensory imagery

Executive processes

Novelty detection -
Perceptual recognition of

known or novel places

Selection and maintenance
of navigational goals

Attention codelets*
& global broadcast* in
LIDA’s cognitive cycle

Reward representations,
reinforcement learning

Route planning or selection
Route plan SBC

(following gradient
on a hierarchical grid)

Expectation violation /
confirmation monitoring,

re-planning, homing...

Uncertainty/Conflict
resolution

Partial: Bayesian
integration

Conflicting cues,
cues other than odometry

& estimated distance

Resetting mechanisms
Partial: maximum

likelihood correction
Kidnapped robot

problem

Table 7.1: Cognitive mechanisms involved in spatial navigation, based on (Wolbers
& Hegarty, 2010). *: an ability of our model making use of existing implementations
(in the LIDA cognitive architecture or the Robot Operating System).
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↓ Representation In our model Not implemented
Online representations

Self-position and orientation ‘Self’ PAM node -
Egocentric self-to-object
directions and distances

Limited (depth from
stereo disparity*)

Egocentric vectors (e.g.
‘reach vectors’ in area 5a)

Allocentric object-to-object
directions and distances

Indirect (on map
representation, but not

perceptually)

Allocentric visuo-
spatial representations

Route progression ‘Route’ PAM nodes Expectations
Navigation goals ‘Goal’ PAM nodes Rewards

Offline representations

Memories of local
views and places

Partial (in pre-conscious
working memory, not

yet in long-term memory)

Long-term memory
representations

Enduring, hierarchical
representations of an

environment (ego-/allocentric)

Hierarchical maps
consisting of
‘place nodes’

Hierarchical egocentric
representations

Networks of habitual routes
Context-action-result chains

in Procedural Memory* -

Table 7.2: Representations involved in spatial navigation, based on (Wolbers &
Hegarty, 2010)

7.2 Limitations and shortcomings

In addition to mechanisms and representations playing an important role in spatial nav-
igation but not yet implemented in our model (Tables 7.1 and 7.2), there are several
shortcomings of our models, which we outline in this Section. They can roughly be
grouped into three categories: computational shortcomings, psychological implausi-
bilities, and neural implausibilities.

7.2.1 Computational shortcomings

We have pointed out in Chapters 1 and 2 that the goal of this work was not to opti-
mize for performance (but rather computational cognitive modelling), and that these
problems can be solved more optimally and accurately, given enough computational
resources. Accuracy and performance of spatial representations are the goals of Si-
multaneous Localization and Mapping (SLAM) in mobile robotics (Thrun & Leonard,
2008).
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State of the art solutions to the SLAM problem can infer robot and landmark lo-
cations down to a few centimetres accuracy or better, but usually require 5− 25% of
the processing power of a current Intel Core i7-3630QM CPU to do so (Santos et al.,
2013), even when just mapping a small room, which amounts to 4−20 billion floating
point operations per second1. Achieving the same in large-scale outdoor environments
would require even more computational resources.

Figure 7.1 shows the structure of modern end-to-end SLAM systems (Wang, 2015),
such as e.g. (Newman et al., 2011). Components depending on the specific sensors and
actuators (’front-end’) are usually separated from the sensor-independent optimization
part (‘back-end’). In our final model described in Chapter 6, the ‘front-end’ roughly
corresponds to the functionality of the Bayesian localization SBC, and the ‘back-end’
to that of the Map correction SBC. Both functionally correspond to hippocampal place
cells, with the former mechanism partially implemented by coincidence detection, and
the latter through reverse replay.

Figure 7.1: Components of a modern end-to-end SLAM system. From (Wang,
2015)

The two main computational shortcomings compared to modern SLAM include 1)
not explicitly modelling rotations (thus avoiding non-linearity caused by robots which
can turn), and 2) not explicitly optimizing landmark constraints (only path integration
and loop closure constraints). These cause inferior localization and mapping accu-
racy compared to modern SLAM. However, they have allowed us to map Bayesian
mechanisms to well-known neural correlates and mechanisms, and to implement sim-
ple models successfully replicating behaviour data, while still retaining the ability to
tackle the uncertainty and noise problem in a realistic robotic simulation.

Although brains may well be capable of the processing power required by a SLAM

1Based on Intel i7 specifications, retrieved from http://download.intel.com/support/
processors/corei7/sb/core_i7-3600_m.pdf
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system, it is unlikely that they work the way modern SLAM solutions do (perform-
ing thousands of linear algebra operations serially) (Thrun & Leonard, 2008). Fur-
thermore, human long-term memories are far from being as accurate as these SLAM
systems, as shown e.g. in Figures 6.7 and 6.8 in Chapter 6, or by research regarding
sketch maps, e.g. (Rovine & Weisman, 1989; Wang & Schwering, 2009). Neverthe-
less, there is value in looking at information processing in brains through the lens of
normative models, of mathematical formulations of the problem to be solved; and of
their implementability in brains and minds.

7.2.2 Psychological implausibilities

Apart from implementation details (in brains and in LIDA), on Marr’s (1976) algorith-
mic level, three major mechanisms were suggested in this thesis: 1) a cue integration
mechanism for localization, 2) correction of cognitive maps when re-visiting places,
and 3) cognitive map structuring through clustering. Despite their ability to fit be-
havioural data as described in Chapters 4-6, there are some psychological findings
which are inconsistent with these mechanisms.

First, our models have focused on adult cognition, and have ignored developmen-
tal findings. Visual spatial integration progressively improves in children between 5
and 14 years of age (Kovacs et al., 1999). Spatial cue integration, while close to the
Bayesian optimum in adults, seems to require a long developmental process; and chil-
dren do not seem to integrate spatial cues, instead switching between exclusively using
path integration or landmark information from trial to trial (Nardini et al., 2008). It is
difficult to model this behaviour in our Bayesian framework.

There are also shortcomings in how landmarks are recognized in the current model,
which assumes that any object recognized by the CNN briefly described in Chapter 6
constitutes a landmark. However, in human (and animal) cognition, landmarks have to
be reliable, salient, stable (unmoving), and possibly distal (Lew, 2011). These criteria
defining landmarks for biological spatial cognition are not accounted for in the model.
Neither are cues in the form of landmark arrays (e.g. humans use the natural axes of
regular arrays of objects as a reference frame) (Lew, 2011; Burgess, 2006).

Phenomena observed in environments with competing cues (e.g. landmarks), where
the information from the cues is not integrated, are also difficult to model in our prob-
abilistic framework. Examples include ‘overshadowing’ (where the effect of a cue
on an animal’s behaviour may be reduced or eliminated when another, more salient
cue is introduced) and ‘blocking’ (where a second cue is added after an animal has
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been trained with the first, but the animal cannot use the second cue without the first)
(Chamizo, 2003). Some evidence of landmark overshadowing and blocking in humans
exists, e.g. (Spetch, 1995; Prados, 2011), and it has been argued that unlike the role
of boundaries, associative reinforcement (and not a map-like representation) may be a
better explanation for landmark learning (Doeller & Burgess, 2008).

Navigation based on two complementary systems running in parallel (a cogni-
tive mapping system using the described mechanisms, and a reward-based associative
learning system based on LIDA’s procedural memory) is conceptually consistent with
blocking and overshadowing, and may be able to explain these findings. We have not
implemented this computationally, however; and the extent of cooperation / compe-
tition between these systems is not yet clear, even on a theoretical level (Lew, 2011;
Cheng et al., 2013).

In addition to the role of landmarks, a ‘geometric module’ for navigation has been
proposed, originally to explain errors which would have been avoidable if perceptual
as opposed to geometric cues had been used (such as rats learning there is food in the
corner of a rectangular environment, but often searching in the diagonally opposite
corner of the environment, which was geometrically - but not perceptually - equiva-
lent) (Cheng, 1986). Similar geometry-based behaviour has been observed in young
children, e.g. by Huttenlocher et al. (1999) (see also (Cheng et al., 2013)). Recent find-
ings cast in doubt the existence of a dedicated geometric module for orientation and
navigation (Cheng, 2008). Nevertheless, empirical observations of such errors (which
are consistent with geometry-based orientation, but could be avoided by making use of
perceptual features/landmarks) are inconsistent with our model, which does not make
such errors.

Other types of systematic errors in spatial representations have been pointed out
in the literature which our model does not account for in its current form. Distortions
result from the hierarchical organization in cognitive maps (Tversky, 1992; Hirtle &
Jonides, 1985) - which, however, could easily be incorporated into the model, given
that it already learns these hierarchies (all that is required is implementing an error
function/mechanism). However, there are also systematic distortions of spatial repre-
sentations which are not easily accounted for in this framework. They include effects
of perspective (where participants are asked to imagine themselves when asked to esti-
mate spatial relations), of cognitive reference points (distance judgements made from
landmark A to building B usually differ from those made from building B to landmark
A), and of detours or barriers (the length of circuitous routes is usually overestimated)
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- see (Tversky, 1992, 2003). Differences in viewpoints used when learning spatial rep-
resentations and when having to use them also cause systematic errors (e.g. (Shelton
& McNamara, 2001, 2004; Burgess, 2006)) which have been neglected by the current
models.

Finally, the current model, when forced to explore very large regions without be-
ing allowed to ever revisit known places, can incur catastrophically large errors to its
learned representations, making the learned map largely useless (we know of no such
effect observed in humans). It is likely that in very large scale environments, humans
make use of several parallel mechanisms including spatial reasoning, as well as of prior
knowledge of the structure of the environment (e.g. the usual shapes of roads), none
of which have been included in the model.

We note that to our knowledge, no current computational cognitive model of spatial
memory achieves full consistency with every empirical finding, while being capable of
running in realistic environments at the same time (see review in Chapter 3). We have
argued that our approach is a step in the direction of such a model, which can be the
case even if it does not support modelling some known aspects of spatial cognition.
As long as the basic premises hold (that brains can represent uncertainty, and can
perform approximate Bayesian inference), and if the shortcomings can be corrected in
future models in a cognitively plausible fashion, the probabilistic approach to spatial
cognition remains viable.

7.2.3 Neural implausibilities

In terms of consistency with neuroscientific findings, we have to distinguish between
the final computational cognitive model based on the LIDA cognitive architecture
(Chapter 6), and the suggested neural mechanisms regarding uncertainty representa-
tion and error correction in the hippocampus. We omit discussing the neural plausibil-
ity of the map structuring model introduced in Chapter 3, since we have not described
any neural implementation of this mechanism, and have only validated it behaviourally
(but see e.g. (Shi & Griffiths, 2009) or (Sanborn, 2015) for possible neural implemen-
tations of hierarchical Bayesian models, to which the DP-GMM belongs). It is, to our
knowledge, the first model able to predict spatial representation structure on the indi-
vidual level; and developing a biologically plausible implementation in addition to a
normative and algorithmic model would have exceeded the time available for this PhD.

Regarding the final model (Chapter 6), LIDA aims to be a model of minds, not
brains (it is a model on Marr’s algorithmic level and not on his implementation level) -
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see (Franklin et al., 2012, 2014) for discussions of the relationship between LIDA and
the underlying neuroscience. Nevertheless, we briefly point out a few mechanisms of
the model in Chapter 6 (LIDA extended by the described probabilistic spatial mech-
anisms and embodied in a robot) which do not directly correspond to known neural
processes.

The first salient difference is the visual recognition system, for which we used ex-
isting implementations to make this work tractable within the scope of a PhD. Specif-
ically, we used convolutional neural networks for recognizing objects (Szegedy et al.,
2014) and roads (Brust et al., 2015), which have been designed for maximizing recog-
nition performance, not for neural plausibility. Curiously, they do seem to learn repre-
sentations that are very similar to those recorded in human and primate inferior tem-
poral cortex (Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2013). But their
conventional training algorithms are not implementable in biological neurons (Stork,
1989; Bengio et al., 2015b). Developing a plausible recognition system would have
exceeded the scope of this PhD. The same is true for motor control, for which we used
existing drivers of the Robot Operating System2 (which are by no means brain-like).

In terms of the spatial extensions to LIDA, the biggest discrepancy is the regular
grid formed by the ‘place nodes’ (Chapter 6). Place cells do not seem to map the sur-
face of an environment in any systematic fashion (O’Keefe et al., 1998). It would be
more accurate to think of ‘place nodes’ as combining several underlying spatially rel-
evant cell types, including entorhinal grid cells, which do form regular grids (although
triangular and not rectangular) (Moser et al., 2008). Grid cells also facilitate estimating
directions and distances (Bush et al., 2015). However, the simple route planning strat-
egy (based on spreading activation on hierarchical grids of place nodes) is not a faithful
model of navigation in the hippocampal-entorhinal complex, as it relies heavily on a
regular structure and on specific link weights depending on distances and obstacles.
Bush et al. (2015) reviews four more biologically plausible network models on Marr’s
implementation level. However, LIDA is concerned with the algorithmic level - and
there is published behavioural evidence for such a mechanism (Mueller et al., 2013).
We have also succeeded in replicating two multi-goal route planning datasets using
our simple model (in virtual as well as real environments - see Appendix C), which
substantiates its cognitive plausibility.

On the other hand, the plausibility of the probabilistic framework for cognitive

2See http://wiki.ros.org/pid and http://gazebosim.org/tutorials?tut=drcsim_
fakewalking&cat=drcsim
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modelling does require, at the very least, the possibility of neurally implementing
Bayesian inference. To show evidence of this possibility, we have compared the firing
of hippocampal place cells to predictions of a Bayesian model, and have suggested
they might be able to represent uncertainty and perform approximately optimal infer-
ence (see Chapter 4). These are hypotheses on the neuronal level. As such, they can be
compared to neuroscientific findings - and they do seem to be inconsistent with some,
as summarized below.

First, humans with hippocampal lesions, although spatially impaired, do seem to
be capable of spatial navigation. For example, (Teng & Squire, 1999) report a patient
with damaged medial temporal areas who was able to describe routes, detours, and di-
rections between landmarks in an environment he has learned early, before the damage.
The authors suggest that the role of the hippocampus is time-limited, mostly concern-
ing consolidation, and that long-term spatial memories are available after consolidation
even with a lesioned hippocampus. Similar observations of largely unimpaired topo-
graphical abilities in patients with hippocampal damage were found by (Rosenbaum
et al., 2000, 2005); although these patients did show some types of impairments (few
recalled landmarks on sketch maps, no detailed geographical knowledge, impaired
landmark recognition).

A later study by Maguire et al. (2006) reinforced the implication that although ac-
cessing long-established spatial memories is still possible with a damaged hippocam-
pus, topographical knowledge of landmarks and of the relationships between them is
impaired. Naturally, the ability to learn new spatial representations is also heavily im-
paired. Nevertheless, some functionalities requiring allocentric representations seem
to be available to patients with hippocampal lesions, which is problematic for the ‘cog-
nitive map’ hypothesis in general, as well as for our model.

Second, the firing fields of place cells do not behave like unique, one-to-one rep-
resentations of location. Some place cells (a minority) have more than one firing field
(Burke et al., 2011). Although usually there are geometric similarities between the
locations of these firing fields (Barry et al., 2006), there are also cases where there
seem to be no systematic commonalities (Park et al., 2011) between them (e.g. similar
distances to surroundings) as would be predicted by a model using these firing fields
as probability distributions. Place fields are also not always regular and elliptic, as
prescribed by the simplest Gaussian model in Chapter 4 (although this is not an issue
for the particle filter-based formulation in Chapter 6, which can represent multimodal
distributions).
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Furthermore, it is not always the case that place fields close to boundaries have to
be smaller than those further away, as would be predicted if they solely represented
uncertainty. For example, firing fields of cells in dorsal hippocampus are generally
smaller than those of cells in more ventral areas (Kjelstrup et al., 2008). There are also
some other phenomena observed in recordings from place cells of behaving animals
which do not easily fit into a probabilistic model. These include remapping (Colgin
et al., 2008) and theta phase precession (Skaggs & McNaughton, 1996).

However, these inconsistencies do not falsify the possibility of an approximate
Bayesian inference mechanism operating in the hippocampus in parallel with several
other mechanisms not accounted for (and in some cases inconsistent with) such a
mechanism. Brains exhibit a high degree of redundancy, and there is no reason to
assume that one cell type only performs one function.

Over-reliance on only a single or few place cells inconsistent with the statistical
optimum could destroy the models functionality. But a larger ensemble of place cells,
a majority of which do represent location estimates and their associated approximate
uncertainty, can still facilitate approximately optimal localization if the contradicting
information in the ensemble (representing other things, such as an episodic memories
(Tulving & Markowitsch, 1998)) is a minority. The approximate Bayesian place cell
hypothesis could be falsified if the number of place cells used for localization, and
having firing fields inconsistent with Bayesian uncertainty predictions, could be shown
to be a majority. This does not seem to be the case in the recordings and environments
investigated here (see Chapter 4).

We can further support the claim of multiple parallel hippocampal mechanisms,
one of which might be approximate Bayesian inference, using three observations. First,
the reasonably good fit of Bayesian predictions with empirical place field sizes reported
in Chapter 4 would be extremely unlikely to occur by chance, given that hundreds of
place fields were included in the comparison. Second, our particle filter localization
model is largely resistant to artificially increasing or decreasing the variance of the
samples at some places3, which is a rudimentary way of simulating some place fields
having a different size than prescribed by a Bayesian model. Third, the uncertainties
predicted by a sampling-based localization model can also successfully explain the
frefquency distribution of place field sizes, even when corrupted by location-unrelated
samples (see comparison in Appendix D).

3In fact, adding random samples, independently from the Bayesian prediction, was one of the early
methods used in robotics to combat ‘particle depletion’ and to increase the chances of the robot being
able to recover its correct location in particle filter-based SLAM (Thrun et al., 2005).
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Finally, in its current formulation, our model depends on approximate multiplica-
tion of incoming signals (e.g. from cells with border-related firing). We have shown
that coincidence detection can implement this multiplication (Chapter 4), pointing out
that it has been observed to occur in place cells (Jarsky et al., 2005; Takahashi &
Magee, 2009), and have argued that the biophysical parameters of CA1 place cells
seem to be in the right range to facilitate multiplication up to an estimated 5% error.
However, a number of influential theories of place cell firing propose thresholded sum-
mation instead of multiplication in place cells. Notable and empirically well-supported
examples include grid field summation models (Solstad et al., 2006), and the Boundary
Vector Cell (BVC) model of place cell firing (Hartley et al., 2000; Barry et al., 2006).
The former does not solve the accumulating path integration error problem (Etienne
et al., 1996), and is thus not suitable for real-world navigation in its original form.

The BVC model serves a different purpose to our model: it is an explanatory model
relying on a large number of parameters to achieve very good fit to a dataset (e.g.
hundreds of parameters for the data in Figure 2 of Chapter 4 - several for each place
cell), whereas our model is normative, arising from a single computational principle
and requiring very few parameters (only path integration and measurement accuracies),
at the cost of less-than-perfect fit to the data. In terms of implementation, the key
difference is that the BVC model suggests place cell firing to depend on a thresholded
sum of BVC firing fields; whereas our model proposes approximate multiplication.

Any function can be approximated by summing a sufficient number of parametrized
Gaussians (Parzen, 1962), so it is unsurprising that the BVC model can fit any firing
field; but it is less obvious that it can also successfully predict the responses of these
fields to topographic changes in the environment (Barry et al., 2006). Our model can
frequently make similar predictions with considerably fewer parameters (Chapter 4),
but there are a number of empirically observed place field responses to such changes
which are inconsistent with our model. Specifically, there is a small number of place
cell firing fields which become bi-modal in larger environments (O’Keefe & Burgess,
1996). This is easy to explain using summation of two Gaussians anchored to opposite
walls in the environment, but contradicts a multiplicative, strictly Bayesian framework.

It is of course possible for a subset of place cells to have a low membrane time and
implement multiplication by coincidence detection, as suggested in Chapter 4, and for
another subset with a higher membrane time to implement summation as suggested by
the BVC model. In this way, the models could be complementary (with our model
treating the minority of secondary firing fields as correctable noise). There is indeed



64 CHAPTER 7. DISCUSSION

more than 40% variation across place cells membrane time constants, suggested to lie
around 18.6+/−8.1ms (Szilagyi et al., 1996), with other observations ranging from
16.6ms in hippocampal area CA1 (Zemankovics et al., 2010) to 23.2ms or 23.6ms in
CA3 (Johnston, 1981).

We have shown that these time constants facilitate calculating Bayesian posteriors
using approximate multiplication, with just 5% (at 16.6ms) to 16% (at 23.6ms) error
compared to the mathematically correct posterior in a leaky integrate-and-fire spiking
neuron model of place cells (Figure 7 in Chapter 4). Of course, this does not prove that
real place cells multiply their inputs, but it shows that they could (there is evidence that
integrate and fire models closely account for in vitro coincidence detection ??). This
is backed by some empirical evidence, e.g. the observation that CA1 cells only exhibit
stable firing when synchronously receiving spikes from perforant path and Schaffer-
collateral synapses, within 5− 10ms (Jarsky et al., 2005). This empirically observed
requirement of synchrony supports our coincidence detection model, and is inconsis-
tent with summation.

Furthermore, as we pointed out in Chapter 4, the BVC model in its original form
does not always yield unambiguous location estimates and is thus not sufficient for
accurate localization on its own. Together, these observations and the empirical evi-
dence for the two models support a view of them being complementary, rather than
one precluding the other.

Yet another possibility is that the calculation of an approximate location posterior
is performed in a brain area other than the hippocampus, such as the entorhinal cortex,
and that place cells simply constitute the output, in which case they could perform
summation as well as being consistent with a Bayesian model. A similar suggestion
has recently been made by Hardcastle et al. (2015), who suggest error correction occurs
in grid cells based on border cell input.

Based on the near impossibility of the strong correlations between Bayesian predic-
tions and recorded firing field sizes arising merely by random chance across hundreds
of place cells (Chapter 4), and on the mathematical necessity of a correction mech-
anism for accumulating location estimate errors, we have argued for a probabilistic
framework to model localization in biological cognition. We think this view has merit
despite some empirical phenomena inconsistent with it. Further future experimental
work will be necessary to isolate the exact computational mechanism implemented by
place cells, to distinguish to what extent some or all of them may sum or multiply their
inputs, and to better understand the role of multi-field place cells in spatial navigation.



Chapter 8

Conclusion

Humans and animals live and act in a world they can only partially observe through
imperfect sensors and process with an inherently noisy information processing system.
In mathematics, probability theory has provided a framework for the representation
and manipulation of uncertainty (Jaynes, 1996). In this thesis, we have argued for the
necessity of such a framework within the field of computational cognitive modelling
as well. We have modelled and interpreted neuroscientific evidence in a probabilistic
framework, providing one of the first examples of Bayesian inference on a single-
neuron level, in order to provide the foundation of this argument (Chapter 4).

Simply using existing algorithmic solutions of probabilistic localization, mapping,
and clustering does not yield viable models of cognition, since these differ from bi-
ological cognitive processes in behaviour, computational requirements, and available
information. However, most existing cognitive models of spatial memory, while plau-
sibly modelling cognition, are unable to deal with sensory noise and uncertainty. We
have provided a detailed review and comparison of such models in Chapter 3, and have
suggested that the ability to function in realistic environments is one of the main gaps
in the literature.

In order to take a first step towards filling this gap, we have proposed probabilistic
computational cognitive models on Marr’s (1976) algorithmic level for the following
mechanisms:

• self-localization (‘where am I?’) - Chapters 4 and 6,

• object localization (‘where is this object?’) - Chapters 4 and 6,

• map correction after revisiting a place (‘I’ve been here before - now how do I fix

my map?’) - Chapter 6,
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• multi-goal route planning (‘how do I get to these places?’) - Chapter 6, and

• map structuring (‘which map does this object belong to?’) - Chapter 5.

Although these problems, with the exception of the last, are well-known in robotics,
we have provided the - to our knowledge - first computational cognitive models which
1) are implementable in brains, 2) can reproduce behavioural data, 3) are part of a
cognitive architecture, integrated with other cognitive processes, and 4) are able to
function in realistic environments with noise and uncertainty (in a robotic simulation
providing the exact same interfaces as a real robot (Rusu et al., 2007)).

We have also shown, for the first time since the discovery of hierarchical struc-
ture in human spatial representations (Hirtle & Jonides, 1985), that such structures are
predictable based on spatial, perceptual, and functional properties of the environment.
We have provided evidence that Bayesian nonparametric clustering under a subject-
specific distance metric accounts for a large majority of buildings belonging together
in participants’ spatial representations.

Our models extend the ‘Bayesian brain’ (Knill & Pouget, 2004) and ‘Bayesian cog-
nition’ (Chater et al., 2010) paradigms by taking one step towards navigation-space
cognitive representations and processes. We hope they will encourage further research
on coping with the challenges posed by the real world in computational cognitive mod-
els of spatial memory.

8.1 Future Work

The work done during this PhD paves the way for several new directions for com-
putational models of brains and minds. The first and most straightforward extension
would be to implement the proposed mechanisms as a biological neural network, in or-
der to make their predictions more tangible and directly comparable with neuroscience
data. Apart from several minor implementation details, this would require designing a
neural model of how hippocampal reverse replay (the suggested mechanism for map
correction) could shift place cell firing fields in the correct direction. The exact im-
plementation of this shifting mechanism in brains is yet unclear, as is the possible
propagation of the discrepancy between the remembered and revisited location esti-
mate when performing a loop.
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The proposed localization and mapping mechanisms could also be made signif-
icantly more accurate, by including orientation information in the gradient descent-
based map correction mechanism. This would make the equations in Chapter 6 non-
linear, and their biologically plausible solution a lot more difficult. Robotics solutions
prescribe geometrical tricks such as the use of rotation matrices to deal with orientation
information (Olson et al., 2006). It would be interesting to investigate whether there
is reason to believe that brains are able to do something similar. Some evidence for
angular information directly encoded in hippocampal representations has been found
recently. For example, Huxter et al. (2008) have recently succeeded in decoding both
position and heading direction from just two place cell spikes. Of course, the question
of how this direction information can be utilized and corrected is still unanswered, and
difficult to tackle.

Noise and uncertainty affect not only navigation-space representations, but also the
space of and around the body. It is likely that evidence for statistically near-optimal
integration of information can be found for tasks such as reaching, and that they can be
modelled in a probabilistic framework similar to the one presented in this thesis. The
strong behavioural evidence for Bayesian cue integration of haptic and visual modali-
ties (Ernst & Banks, 2002) has been one of the key findings precipitating the ‘Bayesian
brain’ hypothesis (Knill & Pouget, 2004), and it is likely that future work can produce
models explaining such observations not only on the behavioural but also on the neural
level.

Other interesting avenues of research are opened up by the evidence that human
spatial representation structures are predictable (Chapter 5). We have only modelled a
simple two-layer structure, which can be extended to a full hierarchy (e.g. using nested
Bayesian nonparametric models (Blei et al., 2010)), or to allow transferring learned
spatial information to new environments (e.g. using hierarchical Dirichlet processes
(Teh et al., 2006)).

Outside of spatial memory research, our results open up the possibility to facili-
tate human-robot interaction by designing new robotic representations corresponding
to human-like spatial concepts (we have shown that even without a subject-specific
model, a general model can predict whether or not objects belong together in people’s
spatial representations in 3 out of 4 cases - see Table 2 in Chapter 5). Our proposed
model of human spatial representation structure could also inspire work in geograph-
ical information science (e.g. new ways of presenting spatial information in a more
easily comprehensible and memorable fashion).



Appendix A

Supplementary Information for
Chapter 4

A.1 Location uncertainty in the two-dimensional case

As described in the Methods section (see Equation (3) in the main text), under Gaussian
assumptions, the probability distribution of the location given a number of observations
can be calculated from

N (µ̂µµ, Σ̂) = γN (µµµp,Σp)
N

∏
i=1

N (µµµo,i,Σo,i) (A.1)

Where µ̂µµ is the mean of the posterior or the ‘best guess’ location, Σ̂ the uncertainty
(covariance) associated with this location, µµµp and Σp are the mean and the uncertainty
of the prior belief location, µµµo,i and Σo,i are the means and uncertainties of the individ-
ual observations, and γ is a constant for normalization.

Analogously to univariate Gaussians (Bromiley, 2003), the product of a number of
multivariate Gaussians is also a multivariate Gaussian. The covariance of the product
in equation (A.1), which contains the uncertainty of the ‘best guess’ location, can be
calculated as follows (Wu, 2004):

Σ̂ = (Σ−1
p +

N

∑
i=1

Σ
−1
o,i )
−1 (A.2)

According to hypothesis 3 (see Hypotheses section), the observation uncertainty is
proportional to the distance di: σo,i = s ·di in the one-dimensional case (where s is a fac-
tor modelling how sensory uncertainty depends on distance). In the two-dimensional
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case, the uncertainty depends on the distances to the landmark in the x and y dimen-
sions, dx,i and dy,i, as well as the factors sx and sy controlling the dependences of the
sensory uncertainties in the x and y dimensions, and the correlation ρ between x and y

(see Negenborn (2003) or Thrun et al. (2005) for more complex sensory uncertainty
models).

Σo,i =

[
(sxdx,i)

2 (ρsxsydx,idy,i)

(ρsysxdy,idx,i) (sydy,i)
2

]
(A.3)

Thus, the covariance matrix for the ‘best guess’ location estimate can be calculated
from the distance measurements dx,i and dy,i to each landmark from equations (A.2)
and (A.3). The covariance matrix modelling path integration uncertainty, Σp, and the
factors modelling the sensory uncertainty, sx and sy (i.e. controlling how rapidly the
accuracy of distance judgements decrease with increasing distances in the x and y
dimensions) and the correlation ρ are adjustable parameters.

A.2 Coincidence detection as rejection sampling and
multiplication by coincidence detection

Coincidence detection as rejection sampling

In the simple three-neuron example shown in Figure 6, the computation performed by
the posterior neuron (place cell), taking as inputs a prior (grid cell) and an observation
(BVC), can be shown to approximate Bayesian inference (i.e. to implement equation
(1) of the main text). Let us consider a temporally constrained spike train, and view
each spike within this spike train as a sample taken from a probability distribution -
either the spikes of the place cell, sampling the posterior location distribution p(x|o),
or those of the grid cell, sampling the prior location distribution p(x), or the spikes of
the BVC, sampling the observation distribution p(o|x). In this case, the computation
performed by the place cell is equivalent to the rejection sampling technique (Liu,
1996; Bishop et al., 2006) used to approximate an unknown distribution. In rejection
sampling, in order to approximate an unknown distribution pu, a known distribution q

is sampled which satisfies

∀z : pu(z)< Mq(z) (A.4)
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Where M > 1 bounds pu(z)/q(z). To ensure that the samples approximate p(z),
the known q(z) is iteratively sampled, and the samples are accepted with a probability
proportional to the ratio

pA = p(accept|z) = pu(z)
Mq(z)

(A.5)

If each sample is randomly drawn from q, and is accepted with probability pA, it is
straightforward to show that these samples will approximate p(z) (Liu, 1996; Bishop et
al., 2006). Briefly, the probability distribution over the accepted samples p(z|accept)

has to equal the unknown distribution pu when using an infinite number of samples for
the following reason. Using Bayes’ theorem,

p(z|accept) =
p(accept|z)p(z)

p(accept)
(A.6)

Where
p(accept|z) = pu(z)

Mq(z)
(A.7)

And the prior probability of a sample z is given by q: p(z) = q(z). The prior
probability of acceptance is given by marginalizing

p(accept) =
∫

z
p(accept|z)p(z)dz =

∫
z

pu(z)
Mq(z)

q(z)dz =
1
M

∫
z

pu(z)dz =
1
M

(A.8)

Thus, substituting into equation (A.6), we obtain the required equality.

p(z|accept) =
pu(z)

Mq(z)q(z)
1
M

= pu(z) (A.9)

In our coincidence detection model (Figure 6), the acceptance probability of spikes
generated by the grid cell is proportional to the spiking probability of the BVC. This is
just the acceptance probability required in order to approximate a Bayesian posterior
by rejection sampling, which can be shown as follows. We use the Bayesian posterior
as the unknown distribution that is to be approximated (cf. equation (1) in the main
text)

pu = p(x|o) = γp(x)p(o|x) (A.10)

Where γ is a constant for normalization. We also assume that the grid cell in Figure



A.2. PLACE CELL REJECTION SAMPLING AND MULTIPLICATION 71

6 represents the prior p(x) and that the BVC represents the observation likelihood
p(o|x). Substituting these expressions into equation (A.5), the acceptance probability
then becomes

pA =
pu(z)

Mq(z)
=

γp(x)p(o|x)
Mp(x)

= kp(o|x) (A.11)

Where k = γ

M . Accepting samples drawn from the prior with this probability pA

ensures that the accepted samples will approximate the Bayesian posterior. Since in the
simple network of Figure 6, the acceptance probability of spikes generated by the prior
neuron (grid cell) is proportional to the spiking probability of the observation neuron
(BVC) because of coincidence detection (Rossant et al., 2011), as in equation (A.11) -
with spiking probability 1, every grid cell spike would be coincident with a BVC spike
and thus accepted, and with spiking probability 0, no grid spike would be accepted - the
network approximates a Bayesian posterior, just like a rejection sampling algorithm.
With infinite firing rates, the network would yield the exact posterior. In realistic cases
the errors depend on the membrane time constant and firing threshold (they lie around
5% for the parameters of CA1 place cells - see Results section in the main text). Figure
7 in the main text shows the error rates of an integrate-and-fire spiking neuron with
different parameters.

Multiplication by coincidence detection

This section describes a mathematical model of how coincidence detection in spiking
neurons can implement multiplication with any number of inputs, and thus approx-
imate a Bayesian posterior from multiple observations (i.e. implement equation (2)
from the main text). In the following we will assume that the spatially localized firing
behaviour of place cells can be approximated and modelled by probability distribu-
tions, cf. hypothesis 1 in the Introduction of the main paper.

Specifically, we will assume that place cell instantaneous firing rates are propor-
tional to the probability density function representing the probability that the rat is in
a particular location: r ∝ p. In the one-dimensional case, the probability PxA,xB that a
rat is located on a path lying between the points xA and xB in the environment, which
it traverses between times tA and tB (at which it is at locations xA and xB respectively),
is proportional to

PxA,xB =
∫ xB

xA

p(x)dx ∝

∫ tB

tA
r(t)dt (A.12)
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If the place cell does not fire, the integral on the right yields zero, which under our
assumption means that the probability that the rat is in the location represented by the
place cell is zero. On the other hand, if the firing rate of the place cell is very high in
the time interval during which the rat crosses the place cells represented location, the
probability that the rat is in that location is also very high.

One way to approximate integrals with a number of samples randomly drawn from
the function to be integrated is called Monte Carlo integration (Robert & Casella,
1999). If we view individual spikes of a neuron as such samples, then the density of a
spike train can be viewed as approximating an integral of the form above (Monte Carlo
approximation of probability distributions by spiking neurons has been suggested be-
fore, see e.g. (Hoyer & Hyvrinen, 2003; Paulin, 2005; Paulin & Hoffman, 2011; Bsing
et al., 2011)).

Using a binary function S to represent a spike train, which at time t is S(t) = 1 if
a neuron has fired a spike within the time interval [t, t + τ), and 0 otherwise, equation
(A.12) can be approximated by the spike train S as follows.

∫ tB

tA
r dt ≈ 1

N ∑
t∈TA,B

S(t) (A.13)

PxA,xB ∝
1
N ∑

t∈TA,B

S(t) (A.14)

Where TA,B denotes the interval between tA and tB (during which the rat was located be-
tween xA and xB) in τ time steps, and N = tb−ta

τ
is the number of time steps of duration

τ within the interval TA,B. In the context of this paper, we can neglect multiplicative
constants and work with the proportionality relations, because the most important task
of localization is to find the ‘best guess’ location xxxb in the environment, i.e. the ex-
pected value of the location xxx, for which the amplitude of the firing rate distribution is
unimportant. Finding the maximum can be expressed as in equation (A.15). There is
an alternative and possibly more accurate (Jensen & Lisman, 2000) way of deriving a
‘best guess’ location from place cell firing, based on theta phase instead of the maxi-
mum firing rate (see Discussion), but that way of estimating location does not depend
on absolute firing rates either. The ‘best guess’ location xxxb based on the expected value
of the location distribution can be calculated from the function S(t) representing the
spike train, the locations xxx(t) at the time of each spike, and the total number of spikes
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K in this interval, which is the sum of S(t) over TA,B:

xxxb = E[xxx]≈ 1
K ∑

t∈TA,B

S(t)xxx(t) =
∑t∈TA,B S(t)xxx(t)

∑t∈TA,B S(t)
(A.15)

The number of spikes is K = ∑t∈TA,B S(t). Using standard deviation as a measure
of uncertainty, the location uncertainty can be described as

Σb =
√

Var(p)≈
√

1
K ∑

t∈TA,B

(S(t)xxx(t)− xxxb)2 (A.16)

Using this way of approximating probability distribution functions with spike train
densities, coincidence detection in spiking neurons can implement multiplication. Look-
ing at two neurons A and B providing input to a third neuron C which performs coin-
cidence detection, it can be shown that the function represented by C’s spike train will
approximate the product of the functions approximated by A and B. If we set the time
discretization parameter τ, to the temporal resolution of coincidence detection (which
mainly depends on the membrane potential and signal-to-noise ratio, see (Brette, 2012)
or Figure 7 in the Results section of Chapter 4 for an error analysis), and ensure that
C’s spike threshold is high enough so that C only fires if input spikes arrive from both
A and B within τ, then the function represented by C’s spike train SC will depend on
the product of SA and SB:

SC(t) = SA(t)SB(t) (A.17)

Equation (A.17) is also extensible to the multiplication of a larger number M of
input neurons Ni. If the threshold of the output neuron N is so high as to require syn-
chronous spikes from all inputs within a time τ, it can simply be extended to calculate
the function SO representing the spike train of the output neuron:

SO(t) =
M

∏
i

SNi(t) (A.18)

In general, the threshold will not be so high as equation (A.18) assumes. Hence,
the output neuron will generally have a threshold such that a proportion α = (0,1] of
all input neurons M spiking synchronously can elicit an output spike (i.e. there is an
output spike only if m > Mα input spikes arrive within τ). Then the approximation of
a product of multiple input spike trains becomes
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SO(t) = H
( 1

M

M

∑
i=1

(Si(t)−α)
)

(A.19)

Where H(a) =
{ 0 if a < 0

1 if a≥ 0
is the Heaviside step function. This equation equals

(A.18) if α = 1, and approximates it otherwise. It is a simplified formulation of how
coincidence detection can perform multiplication in a spiking neuron. We can insert
it into equation (A.14) to obtain the approximation of a probability distribution as
follows.

PxA,xB ∝
1
N ∑

t∈TA,B

SO(t) (A.20)

The expected value of this function, i.e. the represented ‘best guess’ location, will
approximate the mean of the product of input functions - see equation (A.15).

xxxb = E[xxx]≈ 1
K ∑

t∈TA,B

SO(t)xxx(t) =
∑t∈TA,B SO(t)xxx(t)

∑t∈TA,B SO(t)
(A.21)

The particular threshold of the output neuron plays a large role in determining the
accuracy of this approximation, as do the number of samples (spikes). This computa-
tion requires the neuronal parameters influencing temporal resolution and the threshold
to be within a certain range to allow for reasonably accurate localization. Our compu-
tational simulations indicate that the empirically observed parameters of hippocampal
place cells are indeed within a range to allow for statistically near-optimal localization
(see the Results section in the main text).
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Supplementary Information for
Chapter 5

B.1 Tree analysis algorithm

We used an algorithm to extract map structure from recall orders which is functionally
equivalent to the ordered tree algorithm used in prior work (Hirtle & Jonides, 1985;
McNamara, 1986; McNamara et al., 1989), with the exception that we disregard order
information (whether or not the leaves were always recalled in a particular ordering).
The algorithm takes a list of recall protocols, as well as cues, and all possible buildings,
and returns the map structure (all sets of buildings which always occur together).

Algorithm B.1.1: EXTRACTMAPSTRUCTURE(Protocols,Cues,Buildings)

1 : submaps←{}
2 : for each tuplelength ∈ (1, |Buildings|−1)
3 : for each C ∈Combinations(Buildings, tuplelength)

4 : occurseverywhere← True

5 : for each p ∈ (0, |Protocols|)
6 : perm← Permutations(C)

7 : if Cues[p] /∈C and ∀(PC ∈ perm : PC /∈ Protocols[p])

8 : occurseverywhere← False

9 : break
10 : if occurseverywhere

11 : submaps← submaps∪C

75
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The algorithm iterates through all possible tuple lengths, and generates all possible
combinations at the current tuple length. For these combinations C, it checks whether
any permutation of C occurs uninterrupted in all protocols (i.e. whether all buildings
in C have been recalled together); if so, C is added to the list of submaps. Notably,
this check is only performed if C is not cued (line 7). It was argued in previous lit-
erature (Hirtle & Jonides, 1985; McNamara et al., 1989) that cueing can disrupt the
re-call process. Therefore containment in all protocols is only tested for combinations
which do not contain a cue, in order to avoid erroneously disregarding sub-maps which
consistently occur together in all recall protocols except in those in which the cue has
disrupted the natural recall order.

B.2 Full list of cities chosen by included subjects

The map in Figure B.1 provides a visual overview over all cities within which spatial
memory data has been collected from the participants.

Figure B.1: Overview over the 149 cities chosen by subjects in Experiments 1, 3A
and 3B.

List of cities in Experiment 1: Albany, Albuquerque, Ames, Ann Arbor, Austin, Baltimore,
Belgrade, Belmopan, Buffalo, Chennai, Chicago, Chico, Cincinnati, Corvallis, Cupertino, Denton, Den-
ver, Dunmore, Fort Collins, Gobichettipalayam, Hampton, Klamath Falls, Kochi, Lakeland, Las Vegas,
Los Angeles, Madurai, Miami, Minneapolis, Miramar, Mount Kisco, New York, Orange (FL), Pitts-
burgh, Pittsfield Charter Township, Potterville, Reno, Rome, San Angelo, San Bernardino, San Diego,
Somerville, Springfield, Strasbourg, White Salmon, Williamsburg, Wilmington.

List of cities in Experiment 3A: Alameda, Austin, Beacon, Bedford, Belleville, Bellingham,
Bengaluru, Berkeley, Bloomington, Boston, Bowie, Bowling Green (KY), Brooksville, Brownsville,
Buffalo, Burlington, Cambridge, Camden, Cape Girardeau, Castlerock, Chicago, Cincinnati, College
Station (TX), Colombo, Columbia, Denver, Desert Hot Springs (CA), Desoto, Duluth, Eastbrunswick,
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Edinburgh, Fairway, Farmersville, Fayetteville, Franklin, Germantown, Gettysburg, Glasgow, Goleta,
Harwoodheights, Hemet, Highridge, Hollywood, Holt, Houston, Islavista, Jaipur, Karur, Keller, Lack-
awanna, Lake Oswego, Land O’ Lakes, Lindsay, Little River-Academy (TX), Live Oak (TX), Lon-
don, Lubbock, Marthandam, Mayfield, Minneapolis, Mission, Nagercoil, New York, Norridge, Orange,
Overland Park (KA), Owensville, Palmsprings, Perryville, Pigeonforge, Poplarbluff, Portland, Pough-
keepsie, Princeton, Provo, Revere, Rochester, Rochester Hills, Roeland Park, Salem, San Antonio, San
Diego, Sanger, Savage, South Bend, Southport, Springboro, Springhill, St. Charles, Stony Brook (NY),
St. Peters, Temple, Tirunelveli, Towson, Visakhapatnam, Warren, Weatherford, Wilmington, Xenia,
Ypsilanti.

List of cities in Experiment 3B: Algonquin, Ashland, Chicago, Columbia, Jefferson City,
Kansas City, Knoxville, Lexington, Linden, Medford, Minneapolis, Missoula, Mound, Overland Park,
Portland, Seattle, Stara Zagora.

B.3 Exclusion of learning effects

A possible criticism of our results could be the claim that the structure apparent from
the recall protocol orderings is being learned by the subjects during the recall pro-
cess, as opposed to being an inherent property of their long-term memory (LTM). Our
analysis procedure assumes one consistent structure in LTM underlying the recall pro-
tocols; and excludes possible ‘outliers’ using the jackknifing procedure (i.e. protocols
which, when included, would statistically significantly change the resulting structure,
are excluded from analysis).

If this assumption was incorrect, and subjects learned the structure during the ex-
periment - or, alternatively, re-learned a different structure, then this would be apparent
from the pattern of omitted recall protocols. Specifically, it would mean a significantly
larger number of omitted early protocols compared to late protocols (the first few pro-
tocols would be inconsistent with the learned structure more often than the last few).

To test whether this learning effect can be observed, we have tested the distributions
of omitted recall protocols against the null hypothesis that the likelihood of omissions
was uniform (just as likely to occur for the first few as for the last few protocols), using
a chi-square test. The table below shows the results.

For the real-world experiments, the null hypothesis cannot be rejected; thus, it
is likely that there is no learning effect, and that our recall order paradigm indeed
measures structures which have already been committed to LTM before the experi-
ment. For the virtual reality experiment (Exp. 2), there seems to be some small non-
uniformity, although not significant at α = 0.01. However, contrary to the objection
that the structure arises from learning during the recall trials, early protocols were less
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Exp. 1 Exp. 2 Exp. 3A Exp. 3B
p = 0.886 > 0.01 p = 0.015 > 0.01 p = 0.146 > 0.01 p = 0.495 > 0.01
c = 2.339 c = 15.698 c = 9.538 c = 8.393

Table B.1: Results of chi-squared tests against the null hypothesis that there is no
learning effect in the recall protocol data, i.e. that early recall protocols are as likely
to be outliers than late recall protocols (p is the p-value of the test; c denotes the chi
square test statistic). The non-significance of the results suggests that our recall order
paradigm measures a property of long-term memory, and not something learned during
the recall trials.

likely 1, instead of more likely, to be excluded as outliers compared to late protocols.

B.4 Separability of co-represented and not co-represented
building pairs

The co-representation correlations reported in Section 3.3 of the main text raise hopes
of straightforward predictability - what if a simple distance thresholding or linear deci-
sion boundary in the reported feature space is capable of fully explaining cognitive map
structure, even for the random testing environments? Unfortunately, within sub-map
and across sub-map building pairs are not linearly separable; and difficult to separate
in general, even with complex state of the art classifiers.

Figure B.2 shows the distances of all pairs of buildings in all features in Exper-
iment 2, normalized by dividing each feature by its standard deviation for each par-
ticipant map, and compressed down to two-dimensional space for visualization using
t-SNE (without normalization across buildings of each map, classifiers are unable to
perform above chance). Apart from the building pairs (which concentrate into two
groups according to function - shops and houses), decision boundaries obtained with
three different classifiers are also plotted. Although there is a trend of building pairs
being more likely to be on the same sub-map when closer together (higher concentra-
tion of same-map pairs towards the lower left), the data is clearly not well-separable.
As can be seen from this Figure, accurate prediction of full subject map structures
- or even whether single building pairs belong to the same sub-map - using simple
classification is impossible using naive approaches. More complex machine learning

1The frequency of omissions in Experiment 2 were: 1.1% for the protocols presented first, 0.7% for
those at position 2, 1.3% at position 3, 1.6% at position 4, 1.7% at position 5, 1.9% at position 6, and
1.8% at position 7
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Figure B.2: Pairs of buildings in the space of all features, and separability according
to co-representation, in Experiment 2 using 3 different classifiers: logistic regression
(left), Support Vector Machine with RBF-kernel (middle) and Random Forest (right).
Each point represents a building pair (filled black if both buildings lie on the same sub-
map, and white if they do not), with its position being a two-dimensional projection of
the full six-dimensional feature space using t-SNE. Although 2D decision boundaries
are visualized, the reported classifier accuracies were obtained in the original feature
space, using 10-fold cross validation and after hyperparameter optimization.

algorithms such as random forests (state-of-the art classifiers based on ensembles of
decision trees) (Breiman, 2001) can predict for around 83% of building pairs whether
they belong to the same representation (note that the accuracies were obtained by clas-
sifying the full high-dimensional data set, not just the 2D projection plotted in Figures
B.2 and B.3). However, the map structures collected in our experiments contain 10 and
28 pairs (in the 5-building and 8-building maps), which would make the probability of
full map structures - all pairs - being predicted correctly using this approach 15.5%
and 0.5% respectively (the situation is even worse in real-world environments, as can
be seen in the next section).

In the more complex real-world setting of Experiment 3, separating pairs of build-
ings which belong to the same sub-map and those belonging to different sub-maps is
even more difficult than in virtual reality environments, as shown by Figure B.3 and
evidenced by the lower accuracies obtained after 10-fold cross validation. This Figure
shows the distances of all pairs of buildings in all features, normalized by dividing each
feature by its standard deviation for each participant map, and compressed down to
two-dimensional space for visualization using t-SNE. Note that the Figure shows pre-
diction accuracies of pairs of buildings (whether or not a pair was represented on the
same sub-map), and not of entire map structures. To correctly predict a map structure,
all pairs within would need to be predicted correctly. Given the 77% accuracy of the
best classifier in Figure B.3, correct predictions based on classification are even more
unlikely than in Experiment 2 (0.77(

5
2) = 7.3% in condition A, and 0.77(

8
2) = 0.0% in

condition B).
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Figure B.3: Pairs of buildings in the space of all features, and their separability ac-
cording to co-representation, in Experiment 3 using three different classifiers: logistic
regression (left), Support Vector Machine with RBF-kernel (middle) and Random For-
est (right). Top: Condition A. Bottom: Condition B
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C.1 Comparison of hierarchical activation gradient-based
route planning with human performance on the
TSP task

In order to evaluate the plausibility of gradient-based multi-goal route planning, as
described in the main text (see Figure 5), we have used data collected from participants
recruited on Amazon Mechanical Turk, tasked with solving the travelling salesperson
problem (TSP) in virtual reality environments. Data from 46 participants was analysed
here. They were asked to mark all buildings in the 3D environment and then return
to the building they started out with, using the shortest path possible (see (Madl et al.,
2013) for details).

Each participant performed 5 trials in each of three types of environments: random
(in which buildings were randomly distributed), clustered by looks (in which buildings
of the same type, e.g. churches, were ensured to be grouped, close to each other),
and clustered by distance (in which some buildings were placed close to build groups,
regardless of their visual similarity).

Figure C.1 shows participant performance, compared with a gradient-based route
planner operating on a flat (single-level) representation. Interestingly, this non-hierarchical
model seems to explain the human data well. As a caveat, it should be mentioned that
participants were not checked for prior experience with 3D environments (an unknown
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percentage may have had trouble with the controls, falling back to the simplest strat-
egy). Furthermore, this task is inherently more difficult in virtual reality, where cues
important in real-world navigation are not available (e.g. depth information from stereo
disparity, path integration / self movement information, etc.).

To avoid these caveats, we have replicated a real-world TSP experiment by (Wiener
et al., 2009). This experiment was performed in a 6.0m x 8.4m room, with 25 differ-
ent locations marked by boxes with symbols on them, as illustrated in Figure C.2A.
Subjects were given a ‘shopping list’ containing a number of different symbols, each
of which denoted a location that they had to visit, and they subsequently had to plan
the shortest route visiting all of these locations. Figure C.2 shows subjects’ perfor-
mance at this task, and compares it with the simulated performance of an agent using
the gradient climbing heuristic on two-level hierarchical cognitive map. The models
performance closely accounts for human data, as can be seen from this figure, which
substantiates the models cognitive plausibility.

Figure C.1: Human performance in virtual reality, compared to gradient-based
planning on a flat grid of place nodes.



C.1. COMPARISON OF HIERARCHICAL ACTIVATION GRADIENT-BASED ROUTE PLANNING WITH HUMAN PERFORMANCE ON THE TSP TASK83

Figure C.2: Human performance in a real-world experiment (Wiener et al., 2009),
compared to gradient-based planning, on a hierarchical grid of place nodes. Figures
modified from (Wiener et al., 2009) with permission.



Appendix D

Additional evidence for
sampling-based Bayesian localization

In Chapter 7, we have addressed the observation that there is a subset of neurons in the
hippocampus with firing fields which seem to contradict the uncertainty predictions of
a Bayesian model. The reasonably god fit to place fields sizes reported in Chapter 4,
although imperfect, suggest that some place cells do approximate Bayesian posteriors.
However, it is very likely that only a subset does so, and that part of the hippocampus
performs different computations altogether.

To show that our sampling-based Bayesian localization model can function even
under conditions where a proportion of the samples is corrupted by non-Bayesian pro-
cesses, we have compared the distribution of uncertainties predicted by the sampling-
based model, corrupted by 20% uniformly random samples, to the distribution of place
field sizes recorded in an equivalent environment.

We have used the implemented sampling-based cognitive model (described in Chap-
ter 6) to replicate the experiment (Burke et al., 2011). In the experiment, rats were run-
ning in circles on a circular track with 106cm diameter, which contained 2 food trays
to motivate the rats, and no objects in one condition and 8 pseudorandomly distributed,
different objects in another condition. The model performed random trajectories in an
environment of the same proportions, with the same landmarks.

Figure D.1 shows the resulting distribution of uncertainties along the track, mea-
sured as the standard deviation of all posterior samples (location hypotheses) in the
model. These uncertainties are compared to the distribution of place field sizes along
the track. Note the matching ratio of the most frequent place field sizes and uncertain-
ties at 21cm (objects) and 38cm (no objects) respectively, and the roughly matching
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ratio between all normalized frequencies of occurrence between objects and no objects
conditions.

Figure D.1: Occurrence frequencies of different place field sizes in all measured
neurons in the no objects (blue) and 8 objects (red) conditions, compared to the fre-
quencies of position uncertainties in the simulation. Data from (Burke et al., 2011).



Appendix E

Performance of the ADP-GDA metric
on constrained clustering benchmarks

Introduction

We have proposed a novel approach for learning a metric for clustering with pair-
wise constraints in Section 2.5.2 and have used it to model human spatial represen-
tation structure in Chapter 5, showing that it can help predict whether buildings are
co-represented (belong to the same sub-map in spatial memory) in a large majority of
cases. Here, we briefly summarize the difference of this approach from other metric
learning methods, and present some preliminary results of its performance compared
to state of the art approaches.

The framework using a generative classifier as a distance function can be seen as
a novel approach to perform non-linear metric learning using weak supervision in the
form of pairwise constraints, in order to improve clustering performance, as pioneered
in its linear form by (Xing et al., 2002). Although this problem is very similar to metric
learning in general, the criterion of interest is often somewhat different: as opposed to
optimizing the performance of some classifier as in e.g. (Xing et al., 2012)), or for a
large margin as in e.g. (Weinberger et al., 2005), the goal is ensuring that all instances
of a cluster are closer under the learned metric than those of different clusters.

For general applicability, non-linear metrics are vital, because of the problem of
multimodality. When data points forming several groups or ‘modes’ in unweighted
feature space actually belong to the same cluster semantically, as indicated by ML
constraints, there exists no linear projection able to separate them, and linear meth-
ods must inevitably fail. A traditional example is the XOR dataset, consisting of four
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(a) XOR dataset (b) Pairwise differences (c) Non-isotropic data (d) Pairwise differences

Figure E.1: Motivation for the proposed metric learning approach. (a) Example not
linearly separable data requiring non-linear metrics. (b) Visualization of the distribu-
tion of corresponding absolute pairwise differences (APD), containing the element-
wise differences in all dimensions between all possible objects, within (black) and
across (coloured) clusters. The background contour shows the probability of a pair
with a given distance belonging to the same cluster, learned by Gaussian Discrimi-
nant Analysis, and used as the distance pseudometric. Red triangles show the labelled
constraints. (c) Example data with non-isotropic variance (three orders of magnitude
larger in the y-axis direction). (d) Corresponding APD space coloured as in (a). In
addition to the modelled probability of belonging to the same cluster, the models deci-
sion boundary (black), as well as the decision boundary of a Support Vector Machine
with an isotropic RBF kernel (optimal parameters set by grid search), which overfits
along the low-variance dimension.

groups, connected by diagonal ML constraints, such that there exists no linear separat-
ing hyperplane - see Figure E.1a.

Although kernel-based methods can deal with multimodal clustering problems (or
any complicated data distribution) according to the Representer Theorem, in theory,
given the optimal kernel and suitable parameters, in practice it is often difficult to
find such a kernel. Most non-linear metric learning methods able to learn suitable
kernels are sensitive to multiple hyperparameters, and, being nonconvex optimization
problems, frequently get stuck in local minima.

A further issue with popular isotropic kernels such as the Radial Basis Function
(RBF), frequently used in non-linear metric learning (Baghshah & Shouraki, 2010;
Chitta et al., 2011), is that they are ill-suited for data with features on very different
scales, since the optimal regularization parameters in one dimension can be suboptimal
in other dimensions in this case, as pointed out by (Ong et al., 2005) (who propose a
solution only in the supervised setting).

In contrast, our method sidesteps the difficulty of robustly finding a good non-
linear metric for a particular dataset, in a probabilistic framework, without hyperpa-
rameter tuning (it has a closed form solution and estimates all parameters from the
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data). Furthermore, instead of learning a metric using an objective function based on
Lp-distance, which collapses the differences along the individual dimensions into one
value, it lets the model directly access these individual differences, and thus to learn
their importance, allowing it to easily deal with non-isotropic data (Figure E.1c-d).

Third, it makes explicit the structure in the distribution of constraints. It has been
observed before that for data containing clusters, the probability density function of
pairwise Lp distances shows two peaks (one for within- and one for across-cluster
pairs), e.g. by (Brin, 1995). However, in the case of multiple clusters with different
shapes and variances, a bimodal distribution is insufficient to reflect the true distri-
butions of the instance differences within or across clusters. Clearly, within-cluster
variances in one cluster do not have to equal those in another cluster, and the same is
true for across-cluster variances (as illustrated by the variances of the groups of data in
APD space in Figure E.1b and d). Learning in pairwise difference vector space (instead
of collapsing these distances into scalars) allows our model to adapt locally to within-
and across-cluster variances of different clusters, and therefore to better approximate
the true pairwise distance distribution.

E.1 Preliminary results

We use Gaussian Discriminant Analysis (GDA) to learn a data distribution in APD
space, and then use this model as a distance function with which to perform cluster-
ing, as used to model human spatial representation structure in Chapter 5 (however,
note that any probabilistic model could be used in the metric framework introduced
in Equation 2.21 in Chapters 2.5, not just GDA). To show that the model is not only
applicable to human spatial representation data, but also in other domains, we show
clustering performance against 5 benchmark datasets used by (Zeng & Cheung, 2012),
and compare it against a recent constrained clustering approach, Constrained Maxi-
mum Margin Clustering (CMCC) (Zeng & Cheung, 2012).

We evaluate different approaches to perform clustering with the learned distance
metric, including the Gaussian Mixture Model (similar to the DP-GMM, but given the
correct number of clusters), spectral clustering (Ng et al., 2002), weighted, complete,
average and Ward agglomerative clustering (Müllner, 2013), and the well-known K-
Means clustering algorithm (Hartigan & Wong, 1979). Figure E.2 shows the results.
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Figure E.2: Clustering results using the ADS-GDA metric on benchmark
datasets. Evaluation metrics: NMI (normalized mutual information) and Accuracy
(percentage of correctly assigned data points). Abbreviations: dim...dimensionality,
n...number of data points, c...clusters.
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